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The motivation



Some properties of linear algebra (over a finite field)

� few subspaces, 2O(n2)

� small generating sets, O(n2)

� subspace membership in P (echelon form + row-reduce)

� short definitions, O(n2) . . . express any linear system using

x + y = z , x = 0, x = 1, ∃ (auxiliary vars), ∧ (conjunction)
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Some properties of finite groups

� few subpowers

� small generating sets

� subpower membership in P (Schreier-Sims: SGS + sifting)

� short definitions??
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Some properties of finite Mal’tsev algebras

� few subpowers

� small generating sets

� subpower membership in NP, is it in P??

� short definitions??
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The what and the why



Explaining the title

“. . . constraint languages”

� A constraint language over a finite domain A:

Γ = {R1, . . . ,Rm} where Ri ⊆ Ani

� Example (2-SAT) A = {0, 1}, Γ2SAT = {R00,R01,R10,R11}
where Rij = {0, 1}2 \ {(i , j)} (e.g. R01 encodes x ∨ ¬y)

“. . . definitions in. . . ”

� A primitive positive (pp-) formula: ∃,∧,= and symbols from Γ

� A pp-definition: ϕ(x1, . . . , xn) defines R ⊆ An in the usual way

� The relational clone: ⟨Γ⟩ = {R | R is pp-definable from Γ}

“Short. . . ”

� Each R ∈ ⟨Γ⟩n has a pp-definition of length polynomial in n
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Motivation: constraint satisfaction

CSP(Γ)

input a pp-sentence Φ over Γ

question Γ |= Φ?

Example The 2-CNF formula (x ∨ ¬y) ∧ (y ∨ z) ∧ (z ∨ ¬x) is
encoded as Φ = (∃x)(∃y)(∃z)(R01(x , y) ∧ R00(y , z) ∧ R01(z , x))

Moreover:

� solution sets are pp-definable

� pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997)

If ∆ ⊆ ⟨Γ⟩, then CSP(∆) reduces to CSP(Γ).
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The examples



Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk )

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8
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Interesting example

Interesting example (Linear systems over Z2)

� A = {0, 1}, ΓLin = {RLin,C0,C1} where Ca = {a} and

RLin = {(a, b, c) ∈ {0, 1}3 | a+ b = c}

� ⟨ΓLin⟩n consists of all affine subspaces of Zn
2

� Each subspace is a conjunction of at most n linear equations

� Each equation can be pp-defined in O(n):

� for example, x1 + x2 + x3 = 1 is defined by

(∃u1)(∃u2)(x1 + x2 = u1 ∧ u1 + x3 = u2 ∧ u2 = 1)

� in general, xi1 + xi2 + · · ·+ xik = a is defined by

(∃u1) . . . (∃uk−1)(
∧

1≤j≤k−1

RLin(xij , xij+1 , uj) ∧ Ca(uk))

⇒ pp-definitions of length O(n2)
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The conjecture and the result



Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk ) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10



Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk ) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10



Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk ) subpowers iff it is invariant under

a k-edge function.

In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10



Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk ) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm.

Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10



Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk ) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10



Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk ) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority:

2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10



Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk ) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10



Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk ) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)
10



Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk ) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)
10



Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk ) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)
10



Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}: essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)
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(I don’t have time for) the proof



Proof overview

I. Switch to the right formalism (algebras, multisorted)

II. Get rid of the boring case (reduce to parallelogram relations)

III. Reduce to “equation-like” relations (critical, reduced)

IV. Simlulate the “shortening” construction for linear equations4

4Step IV. is the only place where we need residual finiteness. Otherwise, in

“x + y = u” the domain for u may grow too fast (in general, “x + y ̸= y + x”).
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Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥, and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of ]powers of A, R ≤ An.
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Step I – Switch to the right formalism: multisorted

Fundamental theorem of. . .

� arithmetic: n = pe11 · · · p
ek
k e.g. 6 = 2 · 3

� abelian groups: G = Ze1
p1 × · · · × Zek

pk e.g. Z6 = Z2 × Z3

� general algebras: A ≤ A1 × · · · × Ak where Ai ∈ HSP(A) are

subdirectly irreducible (SI)

Working with subdirect decompositions. . .

� Residually finite = finite bound on SIs = ∃N all Ai ∈ HS(AN)

� Multisorted relations: R ≤ An ←→ R ′ ≤
∏m

j=1Aij

� Multisorted definitions over a family of algebras {A1, . . . Ak}
� A has pp-definitions of length O(nk) iff {A1, . . . Ak} does,
etc. (some technical work needed here)
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Step II – Get rid of the boring case

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every R ∈ ⟨Γ⟩ can
be written as

R = R ′ ∧
∧
|I |≤k

projI (R)

for some R ′ ∈ ⟨Γ⟩ with the parallelogram property:

... ...

x̄ ȳ

ū v̄

I [n] \ I

For every I ⊂ [n]:

(x̄ , ȳ), (x̄ , v̄), (ū, ȳ) ∈ R ′

⇒ (ū, v̄) ∈ R ′

[Picture by Michael]

Examples

� ΓLin: R
′ = R (affine subspaces have the parallelogram property)

� Γ2SAT: R
′ = An, already R =

∧
|I |≤2 projI (R) (boring!)

15
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Step III – Reduce to “equation-like” relations

R ∈ ⟨Γ⟩ is critical if it is ∧-irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most

n · |A|2 critical parallelogram relations (c.p.r.’s).

Proof: somewhat like choosing codimension-many linear equations to

define a subspace

Similarity “x1 + x2 = x ′1 + x ′2 iff for some u, x1 + x2 = u and x ′1 + x ′2 = u”

The linkedness congruence ∼I on projI R:

x ∼I x
′ iff (∃z)(R(x, z) ∧ R(x′, z))

R is reduced if ∼{i} is trivial for any i ∈ [n].

Easy: C.p.r.’s can be defined from reduced c.p.r.’s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any I ⊂ [n] the

algebra AI = projI R/∼I is SI. (multisorted Kearnes, Szendrei)
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Step IV – Simlulate “shortening” linear equations

Γ′ = all multisorted 3-ary relations over HS(AN). By induction

on n: a reduced c.p.r. R ∈ ⟨Γ′⟩ has a O(n)-long pp-definition.

Define:

R(x1, . . . , xn)↔ (∃u ∈ A12)(Q(x1, x2, u) ∧ R ′(u, x3, . . . , xn))

z̄

x1 x2

x ′1 x ′2

[Picture by Michael]

u

A12

Q

(x1, x2, u) ∈ Q ⇔
u = (x1, x2)/∼

R ′

(y , z̄) ∈ R ′ :⇔
u = (x1, x2)/∼, (x1, x2, z̄) ∈ R

[slightly ruined by B.]

By Key Lemma, A12 = proj12 R/∼12 is SI, so by residual finiteness it

is in HS(AN). Thus Q ∈ Γ′; the arity of R ′ is n − 1.
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The application



Representing relations

A “representation” of R ∈ ⟨Γ⟩ must be both small and efficient

Examples

� basis of a vector subspace (+ row reduction)

� SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010)

But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples b, a1, . . . , ak from An

question is b in the subpower generated by a1, . . . , ak?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers?

18
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But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples b, a1, . . . , ak from An

question is b in the subpower generated by a1, . . . , ak?
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Polynomial evaluability

Let A have few subpowers

� Question: SMP(A) in P? (BIMMVW 2010)

� Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions ⇒ SMP(A) in NP∩ co-NP

Proof: Guess ϕ(x1, . . . , xn), verify ϕ(ai) for 1 ≤ i ≤ k but ¬ϕ(b)

Question

Given generators for R, can we compute a short pp-definition in

polynomial time?

� If true, then SMP(A) in P

� True for A = {0, 1}, otherwise open

19
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