
Short definitions in constraint languages

Jakub Buĺına, joint work with Michael Kompatscher

105. Arbeitstagung Allgemeine Algebra

Prague, June 2, 2024

a
Supported by Charles University project UNCE/SCI/004 & MEYS Inter-excellence project LTAUSA19070

[1] J. Buĺın and M. Kompatscher: Short definitions in constraint

languages, 48th International Symposium on Mathematical

Foundations of Computer Science (MFCS 2023)

1

The motivation

Some properties of linear algebra (over a finite field)

� few subspaces, 2O(n2)

� small generating sets, O(n2)

� subspace membership in P (echelon form + row-reduce)

� short definitions, O(n2) . . . express any linear system using

x + y = z , x = 0, x = 1, ∃ (auxiliary vars), ∧ (conjunction)

2

Some properties of linear algebra (over a finite field)

� few subspaces

, 2O(n2)

� small generating sets, O(n2)

� subspace membership in P (echelon form + row-reduce)

� short definitions, O(n2) . . . express any linear system using

x + y = z , x = 0, x = 1, ∃ (auxiliary vars), ∧ (conjunction)

2

Some properties of linear algebra (over a finite field)

� few subspaces, 2O(n2)

� small generating sets, O(n2)

� subspace membership in P (echelon form + row-reduce)

� short definitions, O(n2) . . . express any linear system using

x + y = z , x = 0, x = 1, ∃ (auxiliary vars), ∧ (conjunction)

2

Some properties of linear algebra (over a finite field)

� few subspaces, 2O(n2)

� small generating sets

, O(n2)

� subspace membership in P (echelon form + row-reduce)

� short definitions, O(n2) . . . express any linear system using

x + y = z , x = 0, x = 1, ∃ (auxiliary vars), ∧ (conjunction)

2

Some properties of linear algebra (over a finite field)

� few subspaces, 2O(n2)

� small generating sets, O(n2)

� subspace membership in P (echelon form + row-reduce)

� short definitions, O(n2) . . . express any linear system using

x + y = z , x = 0, x = 1, ∃ (auxiliary vars), ∧ (conjunction)

2

Some properties of linear algebra (over a finite field)

� few subspaces, 2O(n2)

� small generating sets, O(n2)

� subspace membership in P

(echelon form + row-reduce)

� short definitions, O(n2) . . . express any linear system using

x + y = z , x = 0, x = 1, ∃ (auxiliary vars), ∧ (conjunction)

2

Some properties of linear algebra (over a finite field)

� few subspaces, 2O(n2)

� small generating sets, O(n2)

� subspace membership in P (echelon form + row-reduce)

� short definitions, O(n2) . . . express any linear system using

x + y = z , x = 0, x = 1, ∃ (auxiliary vars), ∧ (conjunction)

2

Some properties of linear algebra (over a finite field)

� few subspaces, 2O(n2)

� small generating sets, O(n2)

� subspace membership in P (echelon form + row-reduce)

� short definitions, O(n2)

. . . express any linear system using

x + y = z , x = 0, x = 1, ∃ (auxiliary vars), ∧ (conjunction)

2

Some properties of linear algebra (over a finite field)

� few subspaces, 2O(n2)

� small generating sets, O(n2)

� subspace membership in P (echelon form + row-reduce)

� short definitions, O(n2) . . . express any linear system using

x + y = z , x = 0, x = 1, ∃ (auxiliary vars), ∧ (conjunction)

2

Some properties of finite abelian groups

� few sub[groups of]powers

� small generating sets

� subpower membership in P

� short definitions

3

Some properties of finite abelian groups

� few sub[groups of]powers

� small generating sets

� subpower membership in P

� short definitions

3

Some properties of finite abelian groups

� few sub[groups of]powers

� small generating sets

� subpower membership in P

� short definitions

3

Some properties of finite abelian groups

� few sub[groups of]powers

� small generating sets

� subpower membership in P

� short definitions

3

Some properties of finite abelian groups

� few sub[groups of]powers

� small generating sets

� subpower membership in P

� short definitions

3

Some properties of finite groups

� few subpowers

� small generating sets

� subpower membership in P (Schreier-Sims: SGS + sifting)

� short definitions??

4

Some properties of finite groups

� few subpowers

� small generating sets

� subpower membership in P (Schreier-Sims: SGS + sifting)

� short definitions??

4

Some properties of finite groups

� few subpowers

� small generating sets

� subpower membership in P (Schreier-Sims: SGS + sifting)

� short definitions??

4

Some properties of finite groups

� few subpowers

� small generating sets

� subpower membership in P

(Schreier-Sims: SGS + sifting)

� short definitions??

4

Some properties of finite groups

� few subpowers

� small generating sets

� subpower membership in P (Schreier-Sims: SGS + sifting)

� short definitions??

4

Some properties of finite groups

� few subpowers

� small generating sets

� subpower membership in P (Schreier-Sims: SGS + sifting)

� short definitions??

4

Some properties of finite Mal’tsev algebras

� few subpowers

� small generating sets

� subpower membership in NP, is it in P??

� short definitions??

5

Some properties of finite Mal’tsev algebras

� few subpowers

� small generating sets

� subpower membership in NP, is it in P??

� short definitions??

5

Some properties of finite Mal’tsev algebras

� few subpowers

� small generating sets

� subpower membership in NP, is it in P??

� short definitions??

5

Some properties of finite Mal’tsev algebras

� few subpowers

� small generating sets

� subpower membership in NP

, is it in P??

� short definitions??

5

Some properties of finite Mal’tsev algebras

� few subpowers

� small generating sets

� subpower membership in NP, is it in P??

� short definitions??

5

Some properties of finite Mal’tsev algebras

� few subpowers

� small generating sets

� subpower membership in NP, is it in P??

� short definitions??

5

The what and the why

Explaining the title

“. . . constraint languages”

� A constraint language over a finite domain A:

Γ = {R1, . . . ,Rm} where Ri ⊆ Ani

� Example (2-SAT) A = {0, 1}, Γ2SAT = {R00,R01,R10,R11}
where Rij = {0, 1}2 \ {(i , j)} (e.g. R01 encodes x ∨ ¬y)

“. . . definitions in. . . ”

� A primitive positive (pp-) formula: ∃,∧,= and symbols from Γ

� A pp-definition: ϕ(x1, . . . , xn) defines R ⊆ An in the usual way

� The relational clone: ⟨Γ⟩ = {R | R is pp-definable from Γ}

“Short. . . ”

� Each R ∈ ⟨Γ⟩n has a pp-definition of length polynomial in n

6

Explaining the title

“. . . constraint languages”

� A constraint language over a finite domain A:

Γ = {R1, . . . ,Rm} where Ri ⊆ Ani

� Example (2-SAT) A = {0, 1}, Γ2SAT = {R00,R01,R10,R11}
where Rij = {0, 1}2 \ {(i , j)} (e.g. R01 encodes x ∨ ¬y)

“. . . definitions in. . . ”

� A primitive positive (pp-) formula: ∃,∧,= and symbols from Γ

� A pp-definition: ϕ(x1, . . . , xn) defines R ⊆ An in the usual way

� The relational clone: ⟨Γ⟩ = {R | R is pp-definable from Γ}

“Short. . . ”

� Each R ∈ ⟨Γ⟩n has a pp-definition of length polynomial in n

6

Explaining the title

“. . . constraint languages”

� A constraint language over a finite domain A:

Γ = {R1, . . . ,Rm} where Ri ⊆ Ani

� Example (2-SAT) A = {0, 1}, Γ2SAT = {R00,R01,R10,R11}
where Rij = {0, 1}2 \ {(i , j)} (e.g. R01 encodes x ∨ ¬y)

“. . . definitions in. . . ”

� A primitive positive (pp-) formula: ∃,∧,= and symbols from Γ

� A pp-definition: ϕ(x1, . . . , xn) defines R ⊆ An in the usual way

� The relational clone: ⟨Γ⟩ = {R | R is pp-definable from Γ}

“Short. . . ”

� Each R ∈ ⟨Γ⟩n has a pp-definition of length polynomial in n

6

Explaining the title

“. . . constraint languages”

� A constraint language over a finite domain A:

Γ = {R1, . . . ,Rm} where Ri ⊆ Ani

� Example (2-SAT) A = {0, 1}, Γ2SAT = {R00,R01,R10,R11}
where Rij = {0, 1}2 \ {(i , j)} (e.g. R01 encodes x ∨ ¬y)

“. . . definitions in. . . ”

� A primitive positive (pp-) formula: ∃,∧,= and symbols from Γ

� A pp-definition: ϕ(x1, . . . , xn) defines R ⊆ An in the usual way

� The relational clone: ⟨Γ⟩ = {R | R is pp-definable from Γ}

“Short. . . ”

� Each R ∈ ⟨Γ⟩n has a pp-definition of length polynomial in n

6

Explaining the title

“. . . constraint languages”

� A constraint language over a finite domain A:

Γ = {R1, . . . ,Rm} where Ri ⊆ Ani

� Example (2-SAT) A = {0, 1}, Γ2SAT = {R00,R01,R10,R11}
where Rij = {0, 1}2 \ {(i , j)} (e.g. R01 encodes x ∨ ¬y)

“. . . definitions in. . . ”

� A primitive positive (pp-) formula: ∃,∧,= and symbols from Γ

� A pp-definition: ϕ(x1, . . . , xn) defines R ⊆ An in the usual way

� The relational clone: ⟨Γ⟩ = {R | R is pp-definable from Γ}

“Short. . . ”

� Each R ∈ ⟨Γ⟩n has a pp-definition of length polynomial in n

6

Explaining the title

“. . . constraint languages”

� A constraint language over a finite domain A:

Γ = {R1, . . . ,Rm} where Ri ⊆ Ani

� Example (2-SAT) A = {0, 1}, Γ2SAT = {R00,R01,R10,R11}
where Rij = {0, 1}2 \ {(i , j)} (e.g. R01 encodes x ∨ ¬y)

“. . . definitions in. . . ”

� A primitive positive (pp-) formula: ∃,∧,= and symbols from Γ

� A pp-definition: ϕ(x1, . . . , xn) defines R ⊆ An in the usual way

� The relational clone: ⟨Γ⟩ = {R | R is pp-definable from Γ}

“Short. . . ”

� Each R ∈ ⟨Γ⟩n has a pp-definition of length polynomial in n

6

Explaining the title

“. . . constraint languages”

� A constraint language over a finite domain A:

Γ = {R1, . . . ,Rm} where Ri ⊆ Ani

� Example (2-SAT) A = {0, 1}, Γ2SAT = {R00,R01,R10,R11}
where Rij = {0, 1}2 \ {(i , j)} (e.g. R01 encodes x ∨ ¬y)

“. . . definitions in. . . ”

� A primitive positive (pp-) formula: ∃,∧,= and symbols from Γ

� A pp-definition: ϕ(x1, . . . , xn) defines R ⊆ An in the usual way

� The relational clone: ⟨Γ⟩ = {R | R is pp-definable from Γ}

“Short. . . ”

� Each R ∈ ⟨Γ⟩n has a pp-definition of length polynomial in n

6

Explaining the title

“. . . constraint languages”

� A constraint language over a finite domain A:

Γ = {R1, . . . ,Rm} where Ri ⊆ Ani

� Example (2-SAT) A = {0, 1}, Γ2SAT = {R00,R01,R10,R11}
where Rij = {0, 1}2 \ {(i , j)} (e.g. R01 encodes x ∨ ¬y)

“. . . definitions in. . . ”

� A primitive positive (pp-) formula: ∃,∧,= and symbols from Γ

� A pp-definition: ϕ(x1, . . . , xn) defines R ⊆ An in the usual way

� The relational clone: ⟨Γ⟩ = {R | R is pp-definable from Γ}

“Short. . . ”

� Each R ∈ ⟨Γ⟩n has a pp-definition of length polynomial in n

6

Explaining the title

“. . . constraint languages”

� A constraint language over a finite domain A:

Γ = {R1, . . . ,Rm} where Ri ⊆ Ani

� Example (2-SAT) A = {0, 1}, Γ2SAT = {R00,R01,R10,R11}
where Rij = {0, 1}2 \ {(i , j)} (e.g. R01 encodes x ∨ ¬y)

“. . . definitions in. . . ”

� A primitive positive (pp-) formula: ∃,∧,= and symbols from Γ

� A pp-definition: ϕ(x1, . . . , xn) defines R ⊆ An in the usual way

� The relational clone: ⟨Γ⟩ = {R | R is pp-definable from Γ}

“Short. . . ”

� Each R ∈ ⟨Γ⟩n has a pp-definition of length polynomial in n

6

Explaining the title

“. . . constraint languages”

� A constraint language over a finite domain A:

Γ = {R1, . . . ,Rm} where Ri ⊆ Ani

� Example (2-SAT) A = {0, 1}, Γ2SAT = {R00,R01,R10,R11}
where Rij = {0, 1}2 \ {(i , j)} (e.g. R01 encodes x ∨ ¬y)

“. . . definitions in. . . ”

� A primitive positive (pp-) formula: ∃,∧,= and symbols from Γ

� A pp-definition: ϕ(x1, . . . , xn) defines R ⊆ An in the usual way

� The relational clone: ⟨Γ⟩ = {R | R is pp-definable from Γ}

“Short. . . ”

� Each R ∈ ⟨Γ⟩n has a pp-definition of length polynomial in n 6

Motivation: constraint satisfaction

CSP(Γ)

input a pp-sentence Φ over Γ

question Γ |= Φ?

Example The 2-CNF formula (x ∨ ¬y) ∧ (y ∨ z) ∧ (z ∨ ¬x) is
encoded as Φ = (∃x)(∃y)(∃z)(R01(x , y) ∧ R00(y , z) ∧ R01(z , x))

Moreover:

� solution sets are pp-definable

� pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997)

If ∆ ⊆ ⟨Γ⟩, then CSP(∆) reduces to CSP(Γ).

7

Motivation: constraint satisfaction

CSP(Γ)

input a pp-sentence Φ over Γ

question Γ |= Φ?

Example The 2-CNF formula (x ∨ ¬y) ∧ (y ∨ z) ∧ (z ∨ ¬x) is
encoded as Φ = (∃x)(∃y)(∃z)(R01(x , y) ∧ R00(y , z) ∧ R01(z , x))

Moreover:

� solution sets are pp-definable

� pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997)

If ∆ ⊆ ⟨Γ⟩, then CSP(∆) reduces to CSP(Γ).

7

Motivation: constraint satisfaction

CSP(Γ)

input a pp-sentence Φ over Γ

question Γ |= Φ?

Example The 2-CNF formula (x ∨ ¬y) ∧ (y ∨ z) ∧ (z ∨ ¬x) is
encoded as Φ = (∃x)(∃y)(∃z)(R01(x , y) ∧ R00(y , z) ∧ R01(z , x))

Moreover:

� solution sets are pp-definable

� pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997)

If ∆ ⊆ ⟨Γ⟩, then CSP(∆) reduces to CSP(Γ).

7

Motivation: constraint satisfaction

CSP(Γ)

input a pp-sentence Φ over Γ

question Γ |= Φ?

Example The 2-CNF formula (x ∨ ¬y) ∧ (y ∨ z) ∧ (z ∨ ¬x) is
encoded as Φ = (∃x)(∃y)(∃z)(R01(x , y) ∧ R00(y , z) ∧ R01(z , x))

Moreover:

� solution sets are pp-definable

� pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997)

If ∆ ⊆ ⟨Γ⟩, then CSP(∆) reduces to CSP(Γ).

7

Motivation: constraint satisfaction

CSP(Γ)

input a pp-sentence Φ over Γ

question Γ |= Φ?

Example The 2-CNF formula (x ∨ ¬y) ∧ (y ∨ z) ∧ (z ∨ ¬x) is
encoded as Φ = (∃x)(∃y)(∃z)(R01(x , y) ∧ R00(y , z) ∧ R01(z , x))

Moreover:

� solution sets are pp-definable

� pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997)

If ∆ ⊆ ⟨Γ⟩, then CSP(∆) reduces to CSP(Γ).

7

Motivation: constraint satisfaction

CSP(Γ)

input a pp-sentence Φ over Γ

question Γ |= Φ?

Example The 2-CNF formula (x ∨ ¬y) ∧ (y ∨ z) ∧ (z ∨ ¬x) is
encoded as Φ = (∃x)(∃y)(∃z)(R01(x , y) ∧ R00(y , z) ∧ R01(z , x))

Moreover:

� solution sets are pp-definable

� pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997)

If ∆ ⊆ ⟨Γ⟩, then CSP(∆) reduces to CSP(Γ).

7

Motivation: constraint satisfaction

CSP(Γ)

input a pp-sentence Φ over Γ

question Γ |= Φ?

Example The 2-CNF formula (x ∨ ¬y) ∧ (y ∨ z) ∧ (z ∨ ¬x) is
encoded as Φ = (∃x)(∃y)(∃z)(R01(x , y) ∧ R00(y , z) ∧ R01(z , x))

Moreover:

� solution sets are pp-definable

� pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997)

If ∆ ⊆ ⟨Γ⟩, then CSP(∆) reduces to CSP(Γ).

7

Motivation: constraint satisfaction

CSP(Γ)

input a pp-sentence Φ over Γ

question Γ |= Φ?

Example The 2-CNF formula (x ∨ ¬y) ∧ (y ∨ z) ∧ (z ∨ ¬x) is
encoded as Φ = (∃x)(∃y)(∃z)(R01(x , y) ∧ R00(y , z) ∧ R01(z , x))

Moreover:

� solution sets are pp-definable

� pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997)

If ∆ ⊆ ⟨Γ⟩, then CSP(∆) reduces to CSP(Γ).
7

The examples

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions:

each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property

(and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)

8

Nonexamples and boring examples

Γ has short definitions, if ∃ polynomial p(n) such that each

R ∈ ⟨Γ⟩n has a pp-definition ϕ(x1, . . . , xn) of length |ϕ| ≤ p(n).

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions ⇒ ⟨Γ⟩n ∈ 2O(nk)

� Γ3SAT doesn’t have short definitions, ⟨Γ3SAT⟩n contains all 22
n

n-ary relations

� Similarly for ΓHornSAT, |⟨ΓHornSAT⟩|n is double exponential

Boring example (2-SAT)

Γ2SAT has short definitions: each R ∈ ⟨Γ2SAT⟩n satisfies the 2-Helly

property (and binary relations are pp-definable from Γ2SAT):

R(x1, . . . , xn) ↔
∧

1≤i≤j≤n

prijR(xi , xj)

⇒ pp-definitions of length O(n2)
8

Interesting example

Interesting example (Linear systems over Z2)

� A = {0, 1}, ΓLin = {RLin,C0,C1} where Ca = {a} and

RLin = {(a, b, c) ∈ {0, 1}3 | a+ b = c}

� ⟨ΓLin⟩n consists of all affine subspaces of Zn
2

� Each subspace is a conjunction of at most n linear equations

� Each equation can be pp-defined in O(n):

� for example, x1 + x2 + x3 = 1 is defined by

(∃u1)(∃u2)(x1 + x2 = u1 ∧ u1 + x3 = u2 ∧ u2 = 1)

� in general, xi1 + xi2 + · · ·+ xik = a is defined by

(∃u1) . . . (∃uk−1)(
∧

1≤j≤k−1

RLin(xij , xij+1 , uj) ∧ Ca(uk))

⇒ pp-definitions of length O(n2)

9

Interesting example

Interesting example (Linear systems over Z2)

� A = {0, 1}, ΓLin = {RLin,C0,C1} where Ca = {a} and

RLin = {(a, b, c) ∈ {0, 1}3 | a+ b = c}

� ⟨ΓLin⟩n consists of all affine subspaces of Zn
2

� Each subspace is a conjunction of at most n linear equations

� Each equation can be pp-defined in O(n):

� for example, x1 + x2 + x3 = 1 is defined by

(∃u1)(∃u2)(x1 + x2 = u1 ∧ u1 + x3 = u2 ∧ u2 = 1)

� in general, xi1 + xi2 + · · ·+ xik = a is defined by

(∃u1) . . . (∃uk−1)(
∧

1≤j≤k−1

RLin(xij , xij+1 , uj) ∧ Ca(uk))

⇒ pp-definitions of length O(n2)

9

Interesting example

Interesting example (Linear systems over Z2)

� A = {0, 1}, ΓLin = {RLin,C0,C1} where Ca = {a} and

RLin = {(a, b, c) ∈ {0, 1}3 | a+ b = c}

� ⟨ΓLin⟩n consists of all affine subspaces of Zn
2

� Each subspace is a conjunction of at most n linear equations

� Each equation can be pp-defined in O(n):

� for example, x1 + x2 + x3 = 1 is defined by

(∃u1)(∃u2)(x1 + x2 = u1 ∧ u1 + x3 = u2 ∧ u2 = 1)

� in general, xi1 + xi2 + · · ·+ xik = a is defined by

(∃u1) . . . (∃uk−1)(
∧

1≤j≤k−1

RLin(xij , xij+1 , uj) ∧ Ca(uk))

⇒ pp-definitions of length O(n2)

9

Interesting example

Interesting example (Linear systems over Z2)

� A = {0, 1}, ΓLin = {RLin,C0,C1} where Ca = {a} and

RLin = {(a, b, c) ∈ {0, 1}3 | a+ b = c}

� ⟨ΓLin⟩n consists of all affine subspaces of Zn
2

� Each subspace is a conjunction of at most n linear equations

� Each equation can be pp-defined in O(n):

� for example, x1 + x2 + x3 = 1 is defined by

(∃u1)(∃u2)(x1 + x2 = u1 ∧ u1 + x3 = u2 ∧ u2 = 1)

� in general, xi1 + xi2 + · · ·+ xik = a is defined by

(∃u1) . . . (∃uk−1)(
∧

1≤j≤k−1

RLin(xij , xij+1 , uj) ∧ Ca(uk))

⇒ pp-definitions of length O(n2)

9

Interesting example

Interesting example (Linear systems over Z2)

� A = {0, 1}, ΓLin = {RLin,C0,C1} where Ca = {a} and

RLin = {(a, b, c) ∈ {0, 1}3 | a+ b = c}

� ⟨ΓLin⟩n consists of all affine subspaces of Zn
2

� Each subspace is a conjunction of at most n linear equations

� Each equation can be pp-defined in O(n):

� for example, x1 + x2 + x3 = 1 is defined by

(∃u1)(∃u2)(x1 + x2 = u1 ∧ u1 + x3 = u2 ∧ u2 = 1)

� in general, xi1 + xi2 + · · ·+ xik = a is defined by

(∃u1) . . . (∃uk−1)(
∧

1≤j≤k−1

RLin(xij , xij+1 , uj) ∧ Ca(uk))

⇒ pp-definitions of length O(n2)

9

Interesting example

Interesting example (Linear systems over Z2)

� A = {0, 1}, ΓLin = {RLin,C0,C1} where Ca = {a} and

RLin = {(a, b, c) ∈ {0, 1}3 | a+ b = c}

� ⟨ΓLin⟩n consists of all affine subspaces of Zn
2

� Each subspace is a conjunction of at most n linear equations

� Each equation can be pp-defined in O(n):

� for example, x1 + x2 + x3 = 1 is defined by

(∃u1)(∃u2)(x1 + x2 = u1 ∧ u1 + x3 = u2 ∧ u2 = 1)

� in general, xi1 + xi2 + · · ·+ xik = a is defined by

(∃u1) . . . (∃uk−1)(
∧

1≤j≤k−1

RLin(xij , xij+1 , uj) ∧ Ca(uk))

⇒ pp-definitions of length O(n2)

9

Interesting example

Interesting example (Linear systems over Z2)

� A = {0, 1}, ΓLin = {RLin,C0,C1} where Ca = {a} and

RLin = {(a, b, c) ∈ {0, 1}3 | a+ b = c}

� ⟨ΓLin⟩n consists of all affine subspaces of Zn
2

� Each subspace is a conjunction of at most n linear equations

� Each equation can be pp-defined in O(n):

� for example, x1 + x2 + x3 = 1 is defined by

(∃u1)(∃u2)(x1 + x2 = u1 ∧ u1 + x3 = u2 ∧ u2 = 1)

� in general, xi1 + xi2 + · · ·+ xik = a is defined by

(∃u1) . . . (∃uk−1)(
∧

1≤j≤k−1

RLin(xij , xij+1 , uj) ∧ Ca(uk))

⇒ pp-definitions of length O(n2)

9

Interesting example

Interesting example (Linear systems over Z2)

� A = {0, 1}, ΓLin = {RLin,C0,C1} where Ca = {a} and

RLin = {(a, b, c) ∈ {0, 1}3 | a+ b = c}

� ⟨ΓLin⟩n consists of all affine subspaces of Zn
2

� Each subspace is a conjunction of at most n linear equations

� Each equation can be pp-defined in O(n):

� for example, x1 + x2 + x3 = 1 is defined by

(∃u1)(∃u2)(x1 + x2 = u1 ∧ u1 + x3 = u2 ∧ u2 = 1)

� in general, xi1 + xi2 + · · ·+ xik = a is defined by

(∃u1) . . . (∃uk−1)(
∧

1≤j≤k−1

RLin(xij , xij+1 , uj) ∧ Ca(uk))

⇒ pp-definitions of length O(n2)

9

Interesting example

Interesting example (Linear systems over Z2)

� A = {0, 1}, ΓLin = {RLin,C0,C1} where Ca = {a} and

RLin = {(a, b, c) ∈ {0, 1}3 | a+ b = c}

� ⟨ΓLin⟩n consists of all affine subspaces of Zn
2

� Each subspace is a conjunction of at most n linear equations

� Each equation can be pp-defined in O(n):

� for example, x1 + x2 + x3 = 1 is defined by

(∃u1)(∃u2)(x1 + x2 = u1 ∧ u1 + x3 = u2 ∧ u2 = 1)

� in general, xi1 + xi2 + · · ·+ xik = a is defined by

(∃u1) . . . (∃uk−1)(
∧

1≤j≤k−1

RLin(xij , xij+1 , uj) ∧ Ca(uk))

⇒ pp-definitions of length O(n2)
9

The conjecture and the result

Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10

Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10

Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk) subpowers iff it is invariant under

a k-edge function.

In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10

Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm.

Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10

Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10

Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority:

2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10

Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)

10

Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)
10

Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)
10

Few subpowers

Γ has few subpowers if |⟨Γ⟩n| ≤ 2p(n) for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has 2O(nk) subpowers iff it is invariant under

a k-edge function. In that case, CSP(Γ) can be solved by a

Gaussian-elimination-like algorithm. Otherwise, it has Ω(2c
n
)

subpowers for some c > 1.

� Γ2SAT is invariant under the 2-edge function called majority: 2

maj(x , x , y) = maj(x , y , x) = maj(y , x , x) = x

� ΓLin is invariant under the 2-edge Mal’tsev function x − y + z

(general k-edge is a “combination” of those two types of behavior)

2In general, a k-ary function f (x , x , . . . , x , y) = · · · = f (y , x , . . . , x) = x ,

called near-unanimity is equivalent to the k-Helly property (boring!)
10

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}: essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}: essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}: essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}: essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}: essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}:

essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}: essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}: essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}: essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.

3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}: essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.3

Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(strong) Γ has O(nk) definitions iff it has a k-edge function.

� Short definitions imply few subpowers (cardinality argument)

� True for |A| = {0, 1}: essentially only Γ2SAT and ΓLin (Post’s

lattice 1941, first noted by Lagerkvist, Wahlström 2014)

� True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually

finite variety.3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11

(I don’t have time for) the proof

Proof overview

I. Switch to the right formalism (algebras, multisorted)

II. Get rid of the boring case (reduce to parallelogram relations)

III. Reduce to “equation-like” relations (critical, reduced)

IV. Simlulate the “shortening” construction for linear equations4

4Step IV. is the only place where we need residual finiteness. Otherwise, in

“x + y = u” the domain for u may grow too fast (in general, “x + y ̸= y + x”).

12

Proof overview

I. Switch to the right formalism (algebras, multisorted)

II. Get rid of the boring case (reduce to parallelogram relations)

III. Reduce to “equation-like” relations (critical, reduced)

IV. Simlulate the “shortening” construction for linear equations4

4Step IV. is the only place where we need residual finiteness. Otherwise, in

“x + y = u” the domain for u may grow too fast (in general, “x + y ̸= y + x”).

12

Proof overview

I. Switch to the right formalism (algebras, multisorted)

II. Get rid of the boring case (reduce to parallelogram relations)

III. Reduce to “equation-like” relations (critical, reduced)

IV. Simlulate the “shortening” construction for linear equations4

4Step IV. is the only place where we need residual finiteness. Otherwise, in

“x + y = u” the domain for u may grow too fast (in general, “x + y ̸= y + x”).

12

Proof overview

I. Switch to the right formalism (algebras, multisorted)

II. Get rid of the boring case (reduce to parallelogram relations)

III. Reduce to “equation-like” relations (critical, reduced)

IV. Simlulate the “shortening” construction for linear equations4

4Step IV. is the only place where we need residual finiteness. Otherwise, in

“x + y = u” the domain for u may grow too fast (in general, “x + y ̸= y + x”).

12

Proof overview

I. Switch to the right formalism (algebras, multisorted)

II. Get rid of the boring case (reduce to parallelogram relations)

III. Reduce to “equation-like” relations (critical, reduced)

IV. Simlulate the “shortening” construction for linear equations

4

4Step IV. is the only place where we need residual finiteness. Otherwise, in

“x + y = u” the domain for u may grow too fast (in general, “x + y ̸= y + x”).

12

Proof overview

I. Switch to the right formalism (algebras, multisorted)

II. Get rid of the boring case (reduce to parallelogram relations)

III. Reduce to “equation-like” relations (critical, reduced)

IV. Simlulate the “shortening” construction for linear equations4

4Step IV. is the only place where we need residual finiteness. Otherwise, in

“x + y = u” the domain for u may grow too fast (in general, “x + y ̸= y + x”).

12

Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥, and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of]powers of A, R ≤ An.

13

Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥, and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of]powers of A, R ≤ An.

13

Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥,

and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of]powers of A, R ≤ An.

13

Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥, and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of]powers of A, R ≤ An.

13

Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥, and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of]powers of A, R ≤ An.

13

Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥, and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of]powers of A, R ≤ An.

13

Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥, and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of]powers of A, R ≤ An.

13

Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥, and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of]powers of A, R ≤ An.

13

Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥, and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of]powers of A, R ≤ An.

13

Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥, and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of]powers of A, R ≤ An.

13

Step I – Switch to the right formalism: algebras

R ⊆ An is invariant under f : Ak → A, write R ⊥ f :

ai ∈ R for 1 ≤ i ≤ k ⇒ f (a1, . . . , ak) ∈ R

Fact: ⟨Γ⟩ = (Γ⊥)⊥, and also ⟨F⟩ = (F⊥)⊥ (the function clone,

i.e. all term functions built from F)

Examples

� ⟨Γ2SAT⟩ = {maj}⊥

� ⟨ΓLin⟩ = {x − y + z}⊥

� {≤}⊥ = all monotone Boolean functions

Observe: If ⟨Γ⟩ = ⟨Γ′⟩, then Γ has short definitions iff Γ′ does.

Thus natural to consider the polymorphism algebra A = (A; Γ⊥).

Invariant relations are sub-[universes of]powers of A, R ≤ An.
13

Step I – Switch to the right formalism: multisorted

Fundamental theorem of. . .

� arithmetic: n = pe11 · · · p
ek
k e.g. 6 = 2 · 3

� abelian groups: G = Ze1
p1 × · · · × Zek

pk e.g. Z6 = Z2 × Z3

� general algebras: A ≤ A1 × · · · × Ak where Ai ∈ HSP(A) are

subdirectly irreducible (SI)

Working with subdirect decompositions. . .

� Residually finite = finite bound on SIs = ∃N all Ai ∈ HS(AN)

� Multisorted relations: R ≤ An ←→ R ′ ≤
∏m

j=1Aij

� Multisorted definitions over a family of algebras {A1, . . . Ak}
� A has pp-definitions of length O(nk) iff {A1, . . . Ak} does,
etc. (some technical work needed here)

14

Step I – Switch to the right formalism: multisorted

Fundamental theorem of. . .

� arithmetic: n = pe11 · · · p
ek
k e.g. 6 = 2 · 3

� abelian groups: G = Ze1
p1 × · · · × Zek

pk e.g. Z6 = Z2 × Z3

� general algebras: A ≤ A1 × · · · × Ak where Ai ∈ HSP(A) are

subdirectly irreducible (SI)

Working with subdirect decompositions. . .

� Residually finite = finite bound on SIs = ∃N all Ai ∈ HS(AN)

� Multisorted relations: R ≤ An ←→ R ′ ≤
∏m

j=1Aij

� Multisorted definitions over a family of algebras {A1, . . . Ak}
� A has pp-definitions of length O(nk) iff {A1, . . . Ak} does,
etc. (some technical work needed here)

14

Step I – Switch to the right formalism: multisorted

Fundamental theorem of. . .

� arithmetic: n = pe11 · · · p
ek
k e.g. 6 = 2 · 3

� abelian groups: G = Ze1
p1 × · · · × Zek

pk e.g. Z6 = Z2 × Z3

� general algebras: A ≤ A1 × · · · × Ak where Ai ∈ HSP(A) are

subdirectly irreducible (SI)

Working with subdirect decompositions. . .

� Residually finite = finite bound on SIs = ∃N all Ai ∈ HS(AN)

� Multisorted relations: R ≤ An ←→ R ′ ≤
∏m

j=1Aij

� Multisorted definitions over a family of algebras {A1, . . . Ak}
� A has pp-definitions of length O(nk) iff {A1, . . . Ak} does,
etc. (some technical work needed here)

14

Step I – Switch to the right formalism: multisorted

Fundamental theorem of. . .

� arithmetic: n = pe11 · · · p
ek
k e.g. 6 = 2 · 3

� abelian groups: G = Ze1
p1 × · · · × Zek

pk e.g. Z6 = Z2 × Z3

� general algebras: A ≤ A1 × · · · × Ak where Ai ∈ HSP(A) are

subdirectly irreducible (SI)

Working with subdirect decompositions. . .

� Residually finite = finite bound on SIs = ∃N all Ai ∈ HS(AN)

� Multisorted relations: R ≤ An ←→ R ′ ≤
∏m

j=1Aij

� Multisorted definitions over a family of algebras {A1, . . . Ak}
� A has pp-definitions of length O(nk) iff {A1, . . . Ak} does,
etc. (some technical work needed here)

14

Step I – Switch to the right formalism: multisorted

Fundamental theorem of. . .

� arithmetic: n = pe11 · · · p
ek
k e.g. 6 = 2 · 3

� abelian groups: G = Ze1
p1 × · · · × Zek

pk e.g. Z6 = Z2 × Z3

� general algebras: A ≤ A1 × · · · × Ak where Ai ∈ HSP(A) are

subdirectly irreducible (SI)

Working with subdirect decompositions. . .

� Residually finite = finite bound on SIs = ∃N all Ai ∈ HS(AN)

� Multisorted relations: R ≤ An ←→ R ′ ≤
∏m

j=1Aij

� Multisorted definitions over a family of algebras {A1, . . . Ak}
� A has pp-definitions of length O(nk) iff {A1, . . . Ak} does,
etc. (some technical work needed here)

14

Step I – Switch to the right formalism: multisorted

Fundamental theorem of. . .

� arithmetic: n = pe11 · · · p
ek
k e.g. 6 = 2 · 3

� abelian groups: G = Ze1
p1 × · · · × Zek

pk e.g. Z6 = Z2 × Z3

� general algebras: A ≤ A1 × · · · × Ak where Ai ∈ HSP(A) are

subdirectly irreducible (SI)

Working with subdirect decompositions. . .

� Residually finite = finite bound on SIs = ∃N all Ai ∈ HS(AN)

� Multisorted relations: R ≤ An ←→ R ′ ≤
∏m

j=1Aij

� Multisorted definitions over a family of algebras {A1, . . . Ak}
� A has pp-definitions of length O(nk) iff {A1, . . . Ak} does,
etc. (some technical work needed here)

14

Step I – Switch to the right formalism: multisorted

Fundamental theorem of. . .

� arithmetic: n = pe11 · · · p
ek
k e.g. 6 = 2 · 3

� abelian groups: G = Ze1
p1 × · · · × Zek

pk e.g. Z6 = Z2 × Z3

� general algebras: A ≤ A1 × · · · × Ak where Ai ∈ HSP(A) are

subdirectly irreducible (SI)

Working with subdirect decompositions. . .

� Residually finite = finite bound on SIs = ∃N all Ai ∈ HS(AN)

� Multisorted relations: R ≤ An ←→ R ′ ≤
∏m

j=1Aij

� Multisorted definitions over a family of algebras {A1, . . . Ak}
� A has pp-definitions of length O(nk) iff {A1, . . . Ak} does,
etc. (some technical work needed here)

14

Step I – Switch to the right formalism: multisorted

Fundamental theorem of. . .

� arithmetic: n = pe11 · · · p
ek
k e.g. 6 = 2 · 3

� abelian groups: G = Ze1
p1 × · · · × Zek

pk e.g. Z6 = Z2 × Z3

� general algebras: A ≤ A1 × · · · × Ak where Ai ∈ HSP(A) are

subdirectly irreducible (SI)

Working with subdirect decompositions. . .

� Residually finite = finite bound on SIs = ∃N all Ai ∈ HS(AN)

� Multisorted relations: R ≤ An ←→ R ′ ≤
∏m

j=1Aij

� Multisorted definitions over a family of algebras {A1, . . . Ak}
� A has pp-definitions of length O(nk) iff {A1, . . . Ak} does,
etc. (some technical work needed here)

14

Step I – Switch to the right formalism: multisorted

Fundamental theorem of. . .

� arithmetic: n = pe11 · · · p
ek
k e.g. 6 = 2 · 3

� abelian groups: G = Ze1
p1 × · · · × Zek

pk e.g. Z6 = Z2 × Z3

� general algebras: A ≤ A1 × · · · × Ak where Ai ∈ HSP(A) are

subdirectly irreducible (SI)

Working with subdirect decompositions. . .

� Residually finite = finite bound on SIs = ∃N all Ai ∈ HS(AN)

� Multisorted relations: R ≤ An ←→ R ′ ≤
∏m

j=1Aij

� Multisorted definitions over a family of algebras {A1, . . . Ak}

� A has pp-definitions of length O(nk) iff {A1, . . . Ak} does,
etc. (some technical work needed here)

14

Step I – Switch to the right formalism: multisorted

Fundamental theorem of. . .

� arithmetic: n = pe11 · · · p
ek
k e.g. 6 = 2 · 3

� abelian groups: G = Ze1
p1 × · · · × Zek

pk e.g. Z6 = Z2 × Z3

� general algebras: A ≤ A1 × · · · × Ak where Ai ∈ HSP(A) are

subdirectly irreducible (SI)

Working with subdirect decompositions. . .

� Residually finite = finite bound on SIs = ∃N all Ai ∈ HS(AN)

� Multisorted relations: R ≤ An ←→ R ′ ≤
∏m

j=1Aij

� Multisorted definitions over a family of algebras {A1, . . . Ak}
� A has pp-definitions of length O(nk) iff {A1, . . . Ak} does,
etc. (some technical work needed here)

14

Step II – Get rid of the boring case

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every R ∈ ⟨Γ⟩ can
be written as

R = R ′ ∧
∧
|I |≤k

projI (R)

for some R ′ ∈ ⟨Γ⟩ with the parallelogram property:

... ...

x̄ ȳ

ū v̄

I [n] \ I

For every I ⊂ [n]:

(x̄ , ȳ), (x̄ , v̄), (ū, ȳ) ∈ R ′

⇒ (ū, v̄) ∈ R ′

[Picture by Michael]

Examples

� ΓLin: R
′ = R (affine subspaces have the parallelogram property)

� Γ2SAT: R
′ = An, already R =

∧
|I |≤2 projI (R) (boring!)

15

Step II – Get rid of the boring case

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every R ∈ ⟨Γ⟩ can
be written as

R = R ′ ∧
∧
|I |≤k

projI (R)

for some R ′ ∈ ⟨Γ⟩ with the parallelogram property:

... ...

x̄ ȳ

ū v̄

I [n] \ I

For every I ⊂ [n]:

(x̄ , ȳ), (x̄ , v̄), (ū, ȳ) ∈ R ′

⇒ (ū, v̄) ∈ R ′

[Picture by Michael]

Examples

� ΓLin: R
′ = R (affine subspaces have the parallelogram property)

� Γ2SAT: R
′ = An, already R =

∧
|I |≤2 projI (R) (boring!)

15

Step II – Get rid of the boring case

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every R ∈ ⟨Γ⟩ can
be written as

R = R ′ ∧
∧
|I |≤k

projI (R)

for some R ′ ∈ ⟨Γ⟩ with the parallelogram property:

... ...

x̄ ȳ

ū v̄

I [n] \ I

For every I ⊂ [n]:

(x̄ , ȳ), (x̄ , v̄), (ū, ȳ) ∈ R ′

⇒ (ū, v̄) ∈ R ′

[Picture by Michael]

Examples

� ΓLin: R
′ = R (affine subspaces have the parallelogram property)

� Γ2SAT: R
′ = An, already R =

∧
|I |≤2 projI (R) (boring!)

15

Step II – Get rid of the boring case

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every R ∈ ⟨Γ⟩ can
be written as

R = R ′ ∧
∧
|I |≤k

projI (R)

for some R ′ ∈ ⟨Γ⟩ with the parallelogram property:

... ...

x̄ ȳ

ū v̄

I [n] \ I

For every I ⊂ [n]:

(x̄ , ȳ), (x̄ , v̄), (ū, ȳ) ∈ R ′

⇒ (ū, v̄) ∈ R ′

[Picture by Michael]

Examples

� ΓLin: R
′ = R (affine subspaces have the parallelogram property)

� Γ2SAT: R
′ = An, already R =

∧
|I |≤2 projI (R) (boring!)

15

Step II – Get rid of the boring case

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every R ∈ ⟨Γ⟩ can
be written as

R = R ′ ∧
∧
|I |≤k

projI (R)

for some R ′ ∈ ⟨Γ⟩ with the parallelogram property:

... ...

x̄ ȳ

ū v̄

I [n] \ I

For every I ⊂ [n]:

(x̄ , ȳ), (x̄ , v̄), (ū, ȳ) ∈ R ′

⇒ (ū, v̄) ∈ R ′

[Picture by Michael]

Examples

� ΓLin: R
′ = R (affine subspaces have the parallelogram property)

� Γ2SAT: R
′ = An, already R =

∧
|I |≤2 projI (R) (boring!)

15

Step II – Get rid of the boring case

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every R ∈ ⟨Γ⟩ can
be written as

R = R ′ ∧
∧
|I |≤k

projI (R)

for some R ′ ∈ ⟨Γ⟩ with the parallelogram property:

... ...

x̄ ȳ

ū v̄

I [n] \ I

For every I ⊂ [n]:

(x̄ , ȳ), (x̄ , v̄), (ū, ȳ) ∈ R ′

⇒ (ū, v̄) ∈ R ′

[Picture by Michael]

Examples

� ΓLin: R
′ = R (affine subspaces have the parallelogram property)

� Γ2SAT: R
′ = An, already R =

∧
|I |≤2 projI (R) (boring!)

15

Step II – Get rid of the boring case

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every R ∈ ⟨Γ⟩ can
be written as

R = R ′ ∧
∧
|I |≤k

projI (R)

for some R ′ ∈ ⟨Γ⟩ with the parallelogram property:

... ...

x̄ ȳ

ū v̄

I [n] \ I

For every I ⊂ [n]:

(x̄ , ȳ), (x̄ , v̄), (ū, ȳ) ∈ R ′

⇒ (ū, v̄) ∈ R ′

[Picture by Michael]

Examples

� ΓLin: R
′ = R (affine subspaces have the parallelogram property)

� Γ2SAT: R
′ = An, already R =

∧
|I |≤2 projI (R) (boring!) 15

Step III – Reduce to “equation-like” relations

R ∈ ⟨Γ⟩ is critical if it is ∧-irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most

n · |A|2 critical parallelogram relations (c.p.r.’s).

Proof: somewhat like choosing codimension-many linear equations to

define a subspace

Similarity “x1 + x2 = x ′1 + x ′2 iff for some u, x1 + x2 = u and x ′1 + x ′2 = u”

The linkedness congruence ∼I on projI R:

x ∼I x
′ iff (∃z)(R(x, z) ∧ R(x′, z))

R is reduced if ∼{i} is trivial for any i ∈ [n].

Easy: C.p.r.’s can be defined from reduced c.p.r.’s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any I ⊂ [n] the

algebra AI = projI R/∼I is SI. (multisorted Kearnes, Szendrei)

16

Step III – Reduce to “equation-like” relations

R ∈ ⟨Γ⟩ is critical if it is ∧-irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most

n · |A|2 critical parallelogram relations (c.p.r.’s).

Proof: somewhat like choosing codimension-many linear equations to

define a subspace

Similarity “x1 + x2 = x ′1 + x ′2 iff for some u, x1 + x2 = u and x ′1 + x ′2 = u”

The linkedness congruence ∼I on projI R:

x ∼I x
′ iff (∃z)(R(x, z) ∧ R(x′, z))

R is reduced if ∼{i} is trivial for any i ∈ [n].

Easy: C.p.r.’s can be defined from reduced c.p.r.’s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any I ⊂ [n] the

algebra AI = projI R/∼I is SI. (multisorted Kearnes, Szendrei)

16

Step III – Reduce to “equation-like” relations

R ∈ ⟨Γ⟩ is critical if it is ∧-irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most

n · |A|2 critical parallelogram relations (c.p.r.’s).

Proof: somewhat like choosing codimension-many linear equations to

define a subspace

Similarity “x1 + x2 = x ′1 + x ′2 iff for some u, x1 + x2 = u and x ′1 + x ′2 = u”

The linkedness congruence ∼I on projI R:

x ∼I x
′ iff (∃z)(R(x, z) ∧ R(x′, z))

R is reduced if ∼{i} is trivial for any i ∈ [n].

Easy: C.p.r.’s can be defined from reduced c.p.r.’s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any I ⊂ [n] the

algebra AI = projI R/∼I is SI. (multisorted Kearnes, Szendrei)

16

Step III – Reduce to “equation-like” relations

R ∈ ⟨Γ⟩ is critical if it is ∧-irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most

n · |A|2 critical parallelogram relations (c.p.r.’s).

Proof: somewhat like choosing codimension-many linear equations to

define a subspace

Similarity “x1 + x2 = x ′1 + x ′2 iff for some u, x1 + x2 = u and x ′1 + x ′2 = u”

The linkedness congruence ∼I on projI R:

x ∼I x
′ iff (∃z)(R(x, z) ∧ R(x′, z))

R is reduced if ∼{i} is trivial for any i ∈ [n].

Easy: C.p.r.’s can be defined from reduced c.p.r.’s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any I ⊂ [n] the

algebra AI = projI R/∼I is SI. (multisorted Kearnes, Szendrei)

16

Step III – Reduce to “equation-like” relations

R ∈ ⟨Γ⟩ is critical if it is ∧-irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most

n · |A|2 critical parallelogram relations (c.p.r.’s).

Proof: somewhat like choosing codimension-many linear equations to

define a subspace

Similarity “x1 + x2 = x ′1 + x ′2 iff for some u, x1 + x2 = u and x ′1 + x ′2 = u”

The linkedness congruence ∼I on projI R:

x ∼I x
′ iff (∃z)(R(x, z) ∧ R(x′, z))

R is reduced if ∼{i} is trivial for any i ∈ [n].

Easy: C.p.r.’s can be defined from reduced c.p.r.’s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any I ⊂ [n] the

algebra AI = projI R/∼I is SI. (multisorted Kearnes, Szendrei)

16

Step III – Reduce to “equation-like” relations

R ∈ ⟨Γ⟩ is critical if it is ∧-irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most

n · |A|2 critical parallelogram relations (c.p.r.’s).

Proof: somewhat like choosing codimension-many linear equations to

define a subspace

Similarity “x1 + x2 = x ′1 + x ′2 iff for some u, x1 + x2 = u and x ′1 + x ′2 = u”

The linkedness congruence ∼I on projI R:

x ∼I x
′ iff (∃z)(R(x, z) ∧ R(x′, z))

R is reduced if ∼{i} is trivial for any i ∈ [n].

Easy: C.p.r.’s can be defined from reduced c.p.r.’s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any I ⊂ [n] the

algebra AI = projI R/∼I is SI. (multisorted Kearnes, Szendrei)

16

Step III – Reduce to “equation-like” relations

R ∈ ⟨Γ⟩ is critical if it is ∧-irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most

n · |A|2 critical parallelogram relations (c.p.r.’s).

Proof: somewhat like choosing codimension-many linear equations to

define a subspace

Similarity “x1 + x2 = x ′1 + x ′2 iff for some u, x1 + x2 = u and x ′1 + x ′2 = u”

The linkedness congruence ∼I on projI R:

x ∼I x
′ iff (∃z)(R(x, z) ∧ R(x′, z))

R is reduced if ∼{i} is trivial for any i ∈ [n].

Easy: C.p.r.’s can be defined from reduced c.p.r.’s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any I ⊂ [n] the

algebra AI = projI R/∼I is SI. (multisorted Kearnes, Szendrei)

16

Step III – Reduce to “equation-like” relations

R ∈ ⟨Γ⟩ is critical if it is ∧-irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most

n · |A|2 critical parallelogram relations (c.p.r.’s).

Proof: somewhat like choosing codimension-many linear equations to

define a subspace

Similarity “x1 + x2 = x ′1 + x ′2 iff for some u, x1 + x2 = u and x ′1 + x ′2 = u”

The linkedness congruence ∼I on projI R:

x ∼I x
′ iff (∃z)(R(x, z) ∧ R(x′, z))

R is reduced if ∼{i} is trivial for any i ∈ [n].

Easy: C.p.r.’s can be defined from reduced c.p.r.’s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any I ⊂ [n] the

algebra AI = projI R/∼I is SI. (multisorted Kearnes, Szendrei)

16

Step III – Reduce to “equation-like” relations

R ∈ ⟨Γ⟩ is critical if it is ∧-irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most

n · |A|2 critical parallelogram relations (c.p.r.’s).

Proof: somewhat like choosing codimension-many linear equations to

define a subspace

Similarity “x1 + x2 = x ′1 + x ′2 iff for some u, x1 + x2 = u and x ′1 + x ′2 = u”

The linkedness congruence ∼I on projI R:

x ∼I x
′ iff (∃z)(R(x, z) ∧ R(x′, z))

R is reduced if ∼{i} is trivial for any i ∈ [n].

Easy: C.p.r.’s can be defined from reduced c.p.r.’s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any I ⊂ [n] the

algebra AI = projI R/∼I is SI. (multisorted Kearnes, Szendrei) 16

Step IV – Simlulate “shortening” linear equations

Γ′ = all multisorted 3-ary relations over HS(AN). By induction

on n: a reduced c.p.r. R ∈ ⟨Γ′⟩ has a O(n)-long pp-definition.

Define:

R(x1, . . . , xn)↔ (∃u ∈ A12)(Q(x1, x2, u) ∧ R ′(u, x3, . . . , xn))

z̄

x1 x2

x ′1 x ′2

[Picture by Michael]

u

A12

Q

(x1, x2, u) ∈ Q ⇔
u = (x1, x2)/∼

R ′

(y , z̄) ∈ R ′ :⇔
u = (x1, x2)/∼, (x1, x2, z̄) ∈ R

[slightly ruined by B.]

By Key Lemma, A12 = proj12 R/∼12 is SI, so by residual finiteness it

is in HS(AN). Thus Q ∈ Γ′; the arity of R ′ is n − 1.

17

Step IV – Simlulate “shortening” linear equations

Γ′ = all multisorted 3-ary relations over HS(AN).

By induction

on n: a reduced c.p.r. R ∈ ⟨Γ′⟩ has a O(n)-long pp-definition.

Define:

R(x1, . . . , xn)↔ (∃u ∈ A12)(Q(x1, x2, u) ∧ R ′(u, x3, . . . , xn))

z̄

x1 x2

x ′1 x ′2

[Picture by Michael]

u

A12

Q

(x1, x2, u) ∈ Q ⇔
u = (x1, x2)/∼

R ′

(y , z̄) ∈ R ′ :⇔
u = (x1, x2)/∼, (x1, x2, z̄) ∈ R

[slightly ruined by B.]

By Key Lemma, A12 = proj12 R/∼12 is SI, so by residual finiteness it

is in HS(AN). Thus Q ∈ Γ′; the arity of R ′ is n − 1.

17

Step IV – Simlulate “shortening” linear equations

Γ′ = all multisorted 3-ary relations over HS(AN). By induction

on n: a reduced c.p.r. R ∈ ⟨Γ′⟩ has a O(n)-long pp-definition.

Define:

R(x1, . . . , xn)↔ (∃u ∈ A12)(Q(x1, x2, u) ∧ R ′(u, x3, . . . , xn))

z̄

x1 x2

x ′1 x ′2

[Picture by Michael]

u

A12

Q

(x1, x2, u) ∈ Q ⇔
u = (x1, x2)/∼

R ′

(y , z̄) ∈ R ′ :⇔
u = (x1, x2)/∼, (x1, x2, z̄) ∈ R

[slightly ruined by B.]

By Key Lemma, A12 = proj12 R/∼12 is SI, so by residual finiteness it

is in HS(AN). Thus Q ∈ Γ′; the arity of R ′ is n − 1.

17

Step IV – Simlulate “shortening” linear equations

Γ′ = all multisorted 3-ary relations over HS(AN). By induction

on n: a reduced c.p.r. R ∈ ⟨Γ′⟩ has a O(n)-long pp-definition.

Define:

R(x1, . . . , xn)↔ (∃u ∈ A12)(Q(x1, x2, u) ∧ R ′(u, x3, . . . , xn))

z̄

x1 x2

x ′1 x ′2

[Picture by Michael]

u

A12

Q

(x1, x2, u) ∈ Q ⇔
u = (x1, x2)/∼

R ′

(y , z̄) ∈ R ′ :⇔
u = (x1, x2)/∼, (x1, x2, z̄) ∈ R

[slightly ruined by B.]

By Key Lemma, A12 = proj12 R/∼12 is SI, so by residual finiteness it

is in HS(AN). Thus Q ∈ Γ′; the arity of R ′ is n − 1.

17

Step IV – Simlulate “shortening” linear equations

Γ′ = all multisorted 3-ary relations over HS(AN). By induction

on n: a reduced c.p.r. R ∈ ⟨Γ′⟩ has a O(n)-long pp-definition.

Define:

R(x1, . . . , xn)↔ (∃u ∈ A12)(Q(x1, x2, u) ∧ R ′(u, x3, . . . , xn))

z̄

x1 x2

x ′1 x ′2

[Picture by Michael]

u

A12

Q

(x1, x2, u) ∈ Q ⇔
u = (x1, x2)/∼

R ′

(y , z̄) ∈ R ′ :⇔
u = (x1, x2)/∼, (x1, x2, z̄) ∈ R

[slightly ruined by B.]

By Key Lemma, A12 = proj12 R/∼12 is SI, so by residual finiteness it

is in HS(AN). Thus Q ∈ Γ′; the arity of R ′ is n − 1.

17

Step IV – Simlulate “shortening” linear equations

Γ′ = all multisorted 3-ary relations over HS(AN). By induction

on n: a reduced c.p.r. R ∈ ⟨Γ′⟩ has a O(n)-long pp-definition.

Define:

R(x1, . . . , xn)↔ (∃u ∈ A12)(Q(x1, x2, u) ∧ R ′(u, x3, . . . , xn))

z̄

x1 x2

x ′1 x ′2

[Picture by Michael]

u

A12

Q

(x1, x2, u) ∈ Q ⇔
u = (x1, x2)/∼

R ′

(y , z̄) ∈ R ′ :⇔
u = (x1, x2)/∼, (x1, x2, z̄) ∈ R

[slightly ruined by B.]

By Key Lemma, A12 = proj12 R/∼12 is SI, so by residual finiteness it

is in HS(AN). Thus Q ∈ Γ′; the arity of R ′ is n − 1.

17

Step IV – Simlulate “shortening” linear equations

Γ′ = all multisorted 3-ary relations over HS(AN). By induction

on n: a reduced c.p.r. R ∈ ⟨Γ′⟩ has a O(n)-long pp-definition.

Define:

R(x1, . . . , xn)↔ (∃u ∈ A12)(Q(x1, x2, u) ∧ R ′(u, x3, . . . , xn))

z̄

x1 x2

x ′1 x ′2

[Picture by Michael]

u

A12

Q

(x1, x2, u) ∈ Q ⇔
u = (x1, x2)/∼

R ′

(y , z̄) ∈ R ′ :⇔
u = (x1, x2)/∼, (x1, x2, z̄) ∈ R

[slightly ruined by B.]

By Key Lemma, A12 = proj12 R/∼12 is SI, so by residual finiteness it

is in HS(AN). Thus Q ∈ Γ′; the arity of R ′ is n − 1.

17

Step IV – Simlulate “shortening” linear equations

Γ′ = all multisorted 3-ary relations over HS(AN). By induction

on n: a reduced c.p.r. R ∈ ⟨Γ′⟩ has a O(n)-long pp-definition.

Define:

R(x1, . . . , xn)↔ (∃u ∈ A12)(Q(x1, x2, u) ∧ R ′(u, x3, . . . , xn))

z̄

x1 x2

x ′1 x ′2

[Picture by Michael]

u

A12

Q

(x1, x2, u) ∈ Q ⇔
u = (x1, x2)/∼

R ′

(y , z̄) ∈ R ′ :⇔
u = (x1, x2)/∼, (x1, x2, z̄) ∈ R

[slightly ruined by B.]

By Key Lemma, A12 = proj12 R/∼12 is SI, so by residual finiteness it

is in HS(AN). Thus Q ∈ Γ′; the arity of R ′ is n − 1.

17

Step IV – Simlulate “shortening” linear equations

Γ′ = all multisorted 3-ary relations over HS(AN). By induction

on n: a reduced c.p.r. R ∈ ⟨Γ′⟩ has a O(n)-long pp-definition.

Define:

R(x1, . . . , xn)↔ (∃u ∈ A12)(Q(x1, x2, u) ∧ R ′(u, x3, . . . , xn))

z̄

x1 x2

x ′1 x ′2

[Picture by Michael]

u

A12

Q

(x1, x2, u) ∈ Q ⇔
u = (x1, x2)/∼

R ′

(y , z̄) ∈ R ′ :⇔
u = (x1, x2)/∼, (x1, x2, z̄) ∈ R

[slightly ruined by B.]

By Key Lemma, A12 = proj12 R/∼12 is SI, so by residual finiteness it

is in HS(AN). Thus Q ∈ Γ′; the arity of R ′ is n − 1. 17

The application

Representing relations

A “representation” of R ∈ ⟨Γ⟩ must be both small and efficient

Examples

� basis of a vector subspace (+ row reduction)

� SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010)

But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples b, a1, . . . , ak from An

question is b in the subpower generated by a1, . . . , ak?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers?

18

Representing relations

A “representation” of R ∈ ⟨Γ⟩ must be both small and efficient

Examples

� basis of a vector subspace (+ row reduction)

� SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010)

But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples b, a1, . . . , ak from An

question is b in the subpower generated by a1, . . . , ak?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers?

18

Representing relations

A “representation” of R ∈ ⟨Γ⟩ must be both small and efficient

Examples

� basis of a vector subspace (+ row reduction)

� SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010)

But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples b, a1, . . . , ak from An

question is b in the subpower generated by a1, . . . , ak?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers?

18

Representing relations

A “representation” of R ∈ ⟨Γ⟩ must be both small and efficient

Examples

� basis of a vector subspace (+ row reduction)

� SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010)

But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples b, a1, . . . , ak from An

question is b in the subpower generated by a1, . . . , ak?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers?

18

Representing relations

A “representation” of R ∈ ⟨Γ⟩ must be both small and efficient

Examples

� basis of a vector subspace (+ row reduction)

� SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010)

But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples b, a1, . . . , ak from An

question is b in the subpower generated by a1, . . . , ak?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers?

18

Representing relations

A “representation” of R ∈ ⟨Γ⟩ must be both small and efficient

Examples

� basis of a vector subspace (+ row reduction)

� SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010)

But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples b, a1, . . . , ak from An

question is b in the subpower generated by a1, . . . , ak?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers?

18

Representing relations

A “representation” of R ∈ ⟨Γ⟩ must be both small and efficient

Examples

� basis of a vector subspace (+ row reduction)

� SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010)

But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples b, a1, . . . , ak from An

question is b in the subpower generated by a1, . . . , ak?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers?

18

Representing relations

A “representation” of R ∈ ⟨Γ⟩ must be both small and efficient

Examples

� basis of a vector subspace (+ row reduction)

� SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010)

But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples b, a1, . . . , ak from An

question is b in the subpower generated by a1, . . . , ak?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers?

18

Representing relations

A “representation” of R ∈ ⟨Γ⟩ must be both small and efficient

Examples

� basis of a vector subspace (+ row reduction)

� SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010)

But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples b, a1, . . . , ak from An

question is b in the subpower generated by a1, . . . , ak?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers? 18

Polynomial evaluability

Let A have few subpowers

� Question: SMP(A) in P? (BIMMVW 2010)

� Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions ⇒ SMP(A) in NP∩ co-NP

Proof: Guess ϕ(x1, . . . , xn), verify ϕ(ai) for 1 ≤ i ≤ k but ¬ϕ(b)

Question

Given generators for R, can we compute a short pp-definition in

polynomial time?

� If true, then SMP(A) in P

� True for A = {0, 1}, otherwise open

19

Polynomial evaluability

Let A have few subpowers

� Question: SMP(A) in P? (BIMMVW 2010)

� Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions ⇒ SMP(A) in NP∩ co-NP

Proof: Guess ϕ(x1, . . . , xn), verify ϕ(ai) for 1 ≤ i ≤ k but ¬ϕ(b)

Question

Given generators for R, can we compute a short pp-definition in

polynomial time?

� If true, then SMP(A) in P

� True for A = {0, 1}, otherwise open

19

Polynomial evaluability

Let A have few subpowers

� Question: SMP(A) in P? (BIMMVW 2010)

� Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions ⇒ SMP(A) in NP∩ co-NP

Proof: Guess ϕ(x1, . . . , xn), verify ϕ(ai) for 1 ≤ i ≤ k but ¬ϕ(b)

Question

Given generators for R, can we compute a short pp-definition in

polynomial time?

� If true, then SMP(A) in P

� True for A = {0, 1}, otherwise open

19

Polynomial evaluability

Let A have few subpowers

� Question: SMP(A) in P? (BIMMVW 2010)

� Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions ⇒ SMP(A) in NP∩ co-NP

Proof: Guess ϕ(x1, . . . , xn), verify ϕ(ai) for 1 ≤ i ≤ k but ¬ϕ(b)

Question

Given generators for R, can we compute a short pp-definition in

polynomial time?

� If true, then SMP(A) in P

� True for A = {0, 1}, otherwise open

19

Polynomial evaluability

Let A have few subpowers

� Question: SMP(A) in P? (BIMMVW 2010)

� Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions ⇒ SMP(A) in NP∩ co-NP

Proof: Guess ϕ(x1, . . . , xn), verify ϕ(ai) for 1 ≤ i ≤ k but ¬ϕ(b)

Question

Given generators for R, can we compute a short pp-definition in

polynomial time?

� If true, then SMP(A) in P

� True for A = {0, 1}, otherwise open

19

Polynomial evaluability

Let A have few subpowers

� Question: SMP(A) in P? (BIMMVW 2010)

� Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions ⇒ SMP(A) in NP∩ co-NP

Proof: Guess ϕ(x1, . . . , xn), verify ϕ(ai) for 1 ≤ i ≤ k but ¬ϕ(b)

Question

Given generators for R, can we compute a short pp-definition in

polynomial time?

� If true, then SMP(A) in P

� True for A = {0, 1}, otherwise open

19

Polynomial evaluability

Let A have few subpowers

� Question: SMP(A) in P? (BIMMVW 2010)

� Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions ⇒ SMP(A) in NP∩ co-NP

Proof: Guess ϕ(x1, . . . , xn), verify ϕ(ai) for 1 ≤ i ≤ k but ¬ϕ(b)

Question

Given generators for R, can we compute a short pp-definition in

polynomial time?

� If true, then SMP(A) in P

� True for A = {0, 1}, otherwise open

19

Polynomial evaluability

Let A have few subpowers

� Question: SMP(A) in P? (BIMMVW 2010)

� Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions ⇒ SMP(A) in NP∩ co-NP

Proof: Guess ϕ(x1, . . . , xn), verify ϕ(ai) for 1 ≤ i ≤ k but ¬ϕ(b)

Question

Given generators for R, can we compute a short pp-definition in

polynomial time?

� If true, then SMP(A) in P

� True for A = {0, 1}, otherwise open

19

Polynomial evaluability

Let A have few subpowers

� Question: SMP(A) in P? (BIMMVW 2010)

� Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions ⇒ SMP(A) in NP∩ co-NP

Proof: Guess ϕ(x1, . . . , xn), verify ϕ(ai) for 1 ≤ i ≤ k but ¬ϕ(b)

Question

Given generators for R, can we compute a short pp-definition in

polynomial time?

� If true, then SMP(A) in P

� True for A = {0, 1}, otherwise open

19

Polynomial evaluability

Let A have few subpowers

� Question: SMP(A) in P? (BIMMVW 2010)

� Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions ⇒ SMP(A) in NP∩ co-NP

Proof: Guess ϕ(x1, . . . , xn), verify ϕ(ai) for 1 ≤ i ≤ k but ¬ϕ(b)

Question

Given generators for R, can we compute a short pp-definition in

polynomial time?

� If true, then SMP(A) in P

� True for A = {0, 1}, otherwise open
19

