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Some properties of linear algebra (over a finite field)

e few subspaces, 20(n%)
e small generating sets, O(n?)

e subspace membership in P (echelon form + row-reduce)

e short definitions, O(n?) ...express any linear system using
x+y=2z,x=0,x=1, 3 (auxiliary vars), A (conjunction)
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few subpowers

small generating sets

e subpower membership in NP, is it in P77

short definitions??
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Explaining the title

“...constraint languages”

e A constraint language over a finite domain A:

N'={Ri,...,Rn} where R; C A"

Example (2-SAT) A = {0,1}, I'asat = {Roo, Rot1, Ri0, Ri1}
where R; = {0,1}2\ {(i,/)} (e.g. Ro1 encodes x V —y)

... definitions in..."”
e A primitive positive (pp-) formula: 3, A, = and symbols from I'

e A pp-definition: ¢(x1,...,xn) defines R C A” in the usual way
e The relational clone: (I') = {R | R is pp-definable from I'}

“Short...”

e Each R € (I'), has a pp-definition of length polynomial in n 6
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Motivation: constraint satisfaction

CSP(IN)
input a pp-sentence ® over I
question [ = &7

Example The 2-CNF formula (x V —y) A (y V z) A (z V —x) is

encoded as ® = (3x)(3y)(3z)(Ro1(x, y) A Roo(y, z) A Ro1(z, x))
Moreover:

e solution sets are pp-definable

e pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997)
If A C (I'), then CSP(A) reduces to CSP(I').
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Interesting example (Linear systems over Zj)

e A={0,1}, TLin = {RLin, Co, C1 } where C, = {a} and

Ruim = {(a,b,c) € {0,1}* | a+ b= c}
e (I'Lin)n consists of all affine subspaces of Z]

e Each subspace is a conjunction of at most n linear equations
e Each equation can be pp-defined in O(n):

o for example, x; + xo + x3 = 1 is defined by
(Bu)Ew)atx=u A m+x3=w A wp=1)
e in general, x;, + x;, + -+ + x;, = a is defined by

(Fur) ... Bug—1)( /\ Ruin (X5 X415 Uj) A Cal(uk))

1<j<k—1

= pp-definitions of length O(n?)
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[ has few subpowers if |(T'),| < 2P(") for some polynomial p(n)
Theorem ([B]JIMMVW TransAMS+SICOMP 2010)

A constraint language has 20(n) subpowers iff it is invariant under
a k-edge function. In that case, CSP(I') can be solved by a
Gaussian-elimination-like algorithm. Otherwise, it has Q(2°")
subpowers for some ¢ > 1.

e o5t is invariant under the 2-edge function called majority: 2
e [, is invariant under the 2-edge Mal'tsev function x — y + z

(general k-edge is a “combination” of those two types of behavior)

%In general, a k-ary function f(x,x,...,x,y) =--- = f(y,x,...,X) = X,

called near-unanimity is equivalent to the k-Helly property (boring!)
10
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I" has short definitions iff it has few subpowers.

I has O(n) definitions iff it has a k-edge function.

e Short definitions imply few subpowers (cardinality argument)
e True for |A| = {0,1}: essentially only I'ysar and I, (Post’s
lattice 1941, first noted by Lagerkvist, Wahlstrom 2014)

e True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the of [ generates a
variety.3 Corollary True if |A| = 3.

3For groups, this means being an A-group (Sylow subgroups are abelian)

11
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Proof overview

[. Switch to the right formalism (algebras, multisorted)
II. Get rid of the boring case (reduce to parallelogram relations)
IIl. Reduce to “equation-like” relations (critical, reduced)

IV. Simlulate the “shortening” construction for linear equations®

4Step IV. is the only place where we need residual finiteness. Otherwise, in
“x 4+ y = u" the domain for u may grow too fast (in general, “x+y # y + x").
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i.e. all term functions built from F)

Examples
o (Masat) = {maj}*
o (lLin) = {X —y+ Z}J_

e {<}! = all monotone Boolean functions

Observe: If (I') = (I'"), then I has short definitions iff [" does.

Thus natural to consider the polymorphism algebra A = (A; ).
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Working with subdirect decompositions. . .

e Residually finite = finite bound on Sls = AN all A; € HS(AN)
e Multisorted relations: R < A" «+— R' < Hjm:1 A;

e Multisorted definitions over a family of algebras {Ay,... A}
e A has pp-definitions of length O(n*) iff {A1,... Ac} does,

etc. (some technical work needed here)
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for some R' € (') with the parallelogram property:

For every | C [n]:

(x,7),(x,v),(4,y) € R

= (o,v) e R

/ [n]v\ | [Picture by Michael]

Examples

e ILin: R" =R (affine subspaces have the parallelogram property)

e Mosar: R' = A", already R = \\|;<, proj;(R) (boring!) 15
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Similarity “x; +x2 = x{ + x} iff for some u, x; +x = v and x{ + x5 = u”
The linkedness congruence ~; on proj; R:
x~; X iff (32)(R(x,z) A R(X',2))
R is reduced if ~yy is trivial for any i € [n].
Easy: C.p.r.'s can be defined from reduced c.p.r.'s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any / C [n] the
algebra A} = proj; R/~ is Sl. (multisorted Kearnes, Szendrei) 16
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" = all multisorted 3-ary relations over HS(AV). By induction
on n: a reduced c.p.r. R € (I) has a O(n)-long pp-definition.

Define:
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X1 X2
q\_\ ]
‘ ] (y,2) e R &
5 Q(’Lj
5 e [Picture by Michael]

/
R [slightly ruined by B.]

By Key Lemma, A1z = proji2 R/~y, is Sl, so by residual finiteness it
is in HS(AN). Thus Q € I"; the arity of R" is n — 1. 17
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e Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)
If A generates a residually small variety, then SMP(A) in P.
Fact (B., Kompatscher)
Short definitions = SMP(A) in NP N co-NP

Proof: Guess ¢(x1,...,xn), verify ¢(a') for 1 < i < k but —¢(b)

Question
Given generators for R, can we compute a short pp-definition in
polynomial time?

e If true, then SMP(A) in P

e True for A= {0, 1}, otherwise open
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