Short definitions in constraint languages

Jakub Bulín^a, joint work with Michael Kompatscher 105. Arbeitstagung Allgemeine Algebra Prague, June 2, 2024

^aSupported by Charles University project UNCE/SCI/004 & MEYS Inter-excellence project LTAUSA19070

 [1] J. Bulín and M. Kompatscher: Short definitions in constraint languages, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)

The motivation

Some properties of linear algebra (over a finite field)

Some properties of linear algebra (over a finite field)

• few subspaces

• few subspaces, $2^{O(n^2)}$

- few subspaces, $2^{O(n^2)}$
- small generating sets

- few subspaces, $2^{O(n^2)}$
- small generating sets, $O(n^2)$

- few subspaces, $2^{O(n^2)}$
- small generating sets, $O(n^2)$
- subspace membership in P

- few subspaces, $2^{O(n^2)}$
- small generating sets, $O(n^2)$
- subspace membership in P (echelon form + row-reduce)

- few subspaces, $2^{O(n^2)}$
- small generating sets, $O(n^2)$
- subspace membership in P (echelon form + row-reduce)
- short definitions, $O(n^2)$

- few subspaces, $2^{O(n^2)}$
- small generating sets, $O(n^2)$
- subspace membership in P (echelon form + row-reduce)
- short definitions, O(n²) ... express any linear system using x + y = z, x = 0, x = 1, ∃ (auxiliary vars), ∧ (conjunction)

Some properties of finite abelian groups

• few sub[groups of]powers

- few sub[groups of]powers
- small generating sets

- few sub[groups of]powers
- small generating sets
- subpower membership in P

- few sub[groups of]powers
- small generating sets
- subpower membership in P
- short definitions

Some properties of finite groups

• few subpowers

- few subpowers
- small generating sets

- few subpowers
- small generating sets
- subpower membership in P

- few subpowers
- small generating sets
- subpower membership in P (Schreier-Sims: SGS + sifting)

- few subpowers
- small generating sets
- subpower membership in P (Schreier-Sims: SGS + sifting)
- short definitions??

Some properties of finite Mal'tsev algebras

Some properties of finite Mal'tsev algebras

• few subpowers

- few subpowers
- small generating sets

- few subpowers
- small generating sets
- subpower membership in NP

- few subpowers
- small generating sets
- subpower membership in NP, is it in P??

- few subpowers
- small generating sets
- subpower membership in NP, is it in P??
- short definitions??

The what and the why

"... constraint languages"

- "... constraint languages"
 - A constraint language over a finite domain A:

 $\Gamma = \{R_1, \ldots, R_m\}$ where $R_i \subseteq A^{n_i}$

- "... constraint languages"
 - A constraint language over a finite domain A:

 $\Gamma = \{R_1, \ldots, R_m\}$ where $R_i \subseteq A^{n_i}$

• Example (2-SAT) $A = \{0, 1\}, \Gamma_{2SAT} = \{R_{00}, R_{01}, R_{10}, R_{11}\}$ where $R_{ij} = \{0, 1\}^2 \setminus \{(i, j)\}$ (e.g. R_{01} encodes $x \vee \neg y$)

- "... constraint languages"
 - A constraint language over a finite domain A:

 $\Gamma = \{R_1, \ldots, R_m\}$ where $R_i \subseteq A^{n_i}$

- Example (2-SAT) $A = \{0, 1\}$, $\Gamma_{2SAT} = \{R_{00}, R_{01}, R_{10}, R_{11}\}$ where $R_{ij} = \{0, 1\}^2 \setminus \{(i, j)\}$ (e.g. R_{01} encodes $x \vee \neg y$)
- "... definitions in..."

- "... constraint languages"
 - A constraint language over a finite domain A:

 $\Gamma = \{R_1, \ldots, R_m\}$ where $R_i \subseteq A^{n_i}$

- Example (2-SAT) $A = \{0, 1\}$, $\Gamma_{2SAT} = \{R_{00}, R_{01}, R_{10}, R_{11}\}$ where $R_{ij} = \{0, 1\}^2 \setminus \{(i, j)\}$ (e.g. R_{01} encodes $x \vee \neg y$)
- "... definitions in..."
 - A primitive positive (pp-) formula: $\exists, \land, =$ and symbols from Γ

- "... constraint languages"
 - A constraint language over a finite domain A:

 $\Gamma = \{R_1, \ldots, R_m\}$ where $R_i \subseteq A^{n_i}$

- Example (2-SAT) $A = \{0, 1\}$, $\Gamma_{2SAT} = \{R_{00}, R_{01}, R_{10}, R_{11}\}$ where $R_{ij} = \{0, 1\}^2 \setminus \{(i, j)\}$ (e.g. R_{01} encodes $x \vee \neg y$)
- "... definitions in..."
 - A primitive positive (pp-) formula: $\exists, \land, =$ and symbols from Γ
 - A pp-definition: $\phi(x_1, \ldots, x_n)$ defines $R \subseteq A^n$ in the usual way

- "... constraint languages"
 - A constraint language over a finite domain A:

 $\Gamma = \{R_1, \ldots, R_m\}$ where $R_i \subseteq A^{n_i}$

- Example (2-SAT) $A = \{0, 1\}$, $\Gamma_{2SAT} = \{R_{00}, R_{01}, R_{10}, R_{11}\}$ where $R_{ij} = \{0, 1\}^2 \setminus \{(i, j)\}$ (e.g. R_{01} encodes $x \vee \neg y$)
- "... definitions in..."
 - A primitive positive (pp-) formula: $\exists, \land, =$ and symbols from Γ
 - A pp-definition: $\phi(x_1, \ldots, x_n)$ defines $R \subseteq A^n$ in the usual way
 - The relational clone: $\langle \Gamma \rangle = \{ R \mid R \text{ is pp-definable from } \Gamma \}$

- "... constraint languages"
 - A constraint language over a finite domain A:

 $\Gamma = \{R_1, \ldots, R_m\}$ where $R_i \subseteq A^{n_i}$

- Example (2-SAT) $A = \{0, 1\}$, $\Gamma_{2SAT} = \{R_{00}, R_{01}, R_{10}, R_{11}\}$ where $R_{ij} = \{0, 1\}^2 \setminus \{(i, j)\}$ (e.g. R_{01} encodes $x \vee \neg y$)
- "... definitions in..."
 - A primitive positive (pp-) formula: $\exists, \land, =$ and symbols from Γ
 - A pp-definition: $\phi(x_1, \ldots, x_n)$ defines $R \subseteq A^n$ in the usual way
 - The relational clone: $\langle \Gamma \rangle = \{ R \mid R \text{ is pp-definable from } \Gamma \}$

"Short..."

- "... constraint languages"
 - A constraint language over a finite domain A:

 $\Gamma = \{R_1, \ldots, R_m\}$ where $R_i \subseteq A^{n_i}$

- Example (2-SAT) $A = \{0, 1\}$, $\Gamma_{2SAT} = \{R_{00}, R_{01}, R_{10}, R_{11}\}$ where $R_{ij} = \{0, 1\}^2 \setminus \{(i, j)\}$ (e.g. R_{01} encodes $x \vee \neg y$)
- "... definitions in..."
 - A primitive positive (pp-) formula: $\exists, \land, =$ and symbols from Γ
 - A pp-definition: $\phi(x_1, \ldots, x_n)$ defines $R \subseteq A^n$ in the usual way
 - The relational clone: $\langle \Gamma \rangle = \{ R \mid R \text{ is pp-definable from } \Gamma \}$

"Short..."

• Each $R \in \langle \Gamma \rangle_n$ has a pp-definition of length polynomial in n

6

Motivation: constraint satisfaction

$\mathrm{CSP}(\Gamma)$

input a pp-sentence Φ over Γ question $\Gamma \models \Phi$?

input a pp-sentence Φ over Γ **question** $\Gamma \models \Phi$?

Example The 2-CNF formula $(x \lor \neg y) \land (y \lor z) \land (z \lor \neg x)$ is encoded as $\Phi = (\exists x)(\exists y)(\exists z)(R_{01}(x, y) \land R_{00}(y, z) \land R_{01}(z, x))$

input a pp-sentence Φ over Γ question $\Gamma \models \Phi$?

Example The 2-CNF formula $(x \lor \neg y) \land (y \lor z) \land (z \lor \neg x)$ is encoded as $\Phi = (\exists x)(\exists y)(\exists z)(R_{01}(x, y) \land R_{00}(y, z) \land R_{01}(z, x))$

Moreover:

input a pp-sentence Φ over Γ question $\Gamma \models \Phi$?

Example The 2-CNF formula $(x \lor \neg y) \land (y \lor z) \land (z \lor \neg x)$ is encoded as $\Phi = (\exists x)(\exists y)(\exists z)(R_{01}(x, y) \land R_{00}(y, z) \land R_{01}(z, x))$

Moreover:

• solution sets are pp-definable

$\operatorname{CSP}(\Gamma)$

input a pp-sentence Φ over Γ question $\Gamma \models \Phi$?

Example The 2-CNF formula $(x \lor \neg y) \land (y \lor z) \land (z \lor \neg x)$ is encoded as $\Phi = (\exists x)(\exists y)(\exists z)(R_{01}(x, y) \land R_{00}(y, z) \land R_{01}(z, x))$

Moreover:

- solution sets are pp-definable
- pp-definitions are gadget reductions

input a pp-sentence Φ over Γ question $\Gamma \models \Phi$?

Example The 2-CNF formula $(x \lor \neg y) \land (y \lor z) \land (z \lor \neg x)$ is encoded as $\Phi = (\exists x)(\exists y)(\exists z)(R_{01}(x, y) \land R_{00}(y, z) \land R_{01}(z, x))$

Moreover:

- solution sets are pp-definable
- pp-definitions are gadget reductions

$\operatorname{CSP}(\Gamma)$

input a pp-sentence Φ over Γ **question** $\Gamma \models \Phi$?

Example The 2-CNF formula $(x \lor \neg y) \land (y \lor z) \land (z \lor \neg x)$ is encoded as $\Phi = (\exists x)(\exists y)(\exists z)(R_{01}(x, y) \land R_{00}(y, z) \land R_{01}(z, x))$

Moreover:

- solution sets are pp-definable
- pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997) If $\Delta \subseteq \langle \Gamma \rangle$, then $\mathrm{CSP}(\Delta)$ reduces to $\mathrm{CSP}(\Gamma)$. The examples

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \le p(n)$.

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \leq p(n)$. Nonexamples (3-SAT, Horn-SAT)

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \le p(n)$. Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions $\Rightarrow \langle \Gamma \rangle_n \in 2^{O(n^k)}$

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \le p(n)$. Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions $\Rightarrow \langle \Gamma \rangle_n \in 2^{O(n^k)}$

• Γ_{3SAT} doesn't have short definitions, $\langle \Gamma_{3SAT} \rangle_n$ contains all 2^{2^n} *n*-ary relations

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \le p(n)$. Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions $\Rightarrow \langle \Gamma \rangle_n \in 2^{O(n^k)}$

- $\Gamma_{3\rm SAT}$ doesn't have short definitions, $\langle \Gamma_{3\rm SAT} \rangle_n$ contains all 2^{2^n} *n*-ary relations
- Similarly for $\Gamma_{\mathrm{HornSAT}}$, $|\langle \Gamma_{\mathrm{HornSAT}} \rangle|_n$ is double exponential

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \le p(n)$. Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions $\Rightarrow \langle \Gamma \rangle_n \in 2^{O(n^k)}$

- $\Gamma_{3\rm SAT}$ doesn't have short definitions, $\langle \Gamma_{3\rm SAT} \rangle_n$ contains all 2^{2^n} *n*-ary relations
- Similarly for $\Gamma_{\rm HornSAT},\,|\langle\Gamma_{\rm HornSAT}\rangle|_{\it n}$ is double exponential

Boring example (2-SAT)

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \le p(n)$. Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions $\Rightarrow \langle \Gamma \rangle_n \in 2^{O(n^k)}$

- $\Gamma_{3\rm SAT}$ doesn't have short definitions, $\langle \Gamma_{3\rm SAT} \rangle_n$ contains all 2^{2^n} *n*-ary relations
- Similarly for $\Gamma_{\rm HornSAT},\,|\langle\Gamma_{\rm HornSAT}\rangle|_{\it n}$ is double exponential

Boring example (2-SAT)

 $\Gamma_{\rm 2SAT}$ has short definitions:

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \le p(n)$. Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions $\Rightarrow \langle \Gamma \rangle_n \in 2^{O(n^k)}$

- $\Gamma_{3\rm SAT}$ doesn't have short definitions, $\langle \Gamma_{3\rm SAT} \rangle_n$ contains all 2^{2^n} *n*-ary relations
- Similarly for $\Gamma_{\rm HornSAT}$, $|\langle \Gamma_{\rm HornSAT} \rangle|_n$ is double exponential

Boring example (2-SAT)

 Γ_{2SAT} has short definitions: each $R \in \langle \Gamma_{2SAT} \rangle_n$ satisfies the 2-Helly property

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \le p(n)$. Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions $\Rightarrow \langle \Gamma \rangle_n \in 2^{O(n^k)}$

- $\Gamma_{3\rm SAT}$ doesn't have short definitions, $\langle \Gamma_{3\rm SAT} \rangle_n$ contains all 2^{2^n} *n*-ary relations
- Similarly for $\Gamma_{\rm HornSAT}$, $|\langle \Gamma_{\rm HornSAT} \rangle|_n$ is double exponential

Boring example (2-SAT)

 Γ_{2SAT} has short definitions: each $R \in \langle \Gamma_{2SAT} \rangle_n$ satisfies the 2-Helly property (and binary relations are pp-definable from Γ_{2SAT}):

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \le p(n)$. Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions $\Rightarrow \langle \Gamma \rangle_n \in 2^{O(n^k)}$

- $\Gamma_{3\rm SAT}$ doesn't have short definitions, $\langle \Gamma_{3\rm SAT} \rangle_n$ contains all 2^{2^n} *n*-ary relations
- Similarly for $\Gamma_{\rm HornSAT}$, $|\langle \Gamma_{\rm HornSAT} \rangle|_n$ is double exponential

Boring example (2-SAT)

 Γ_{2SAT} has short definitions: each $R \in \langle \Gamma_{2SAT} \rangle_n$ satisfies the 2-Helly property (and binary relations are pp-definable from Γ_{2SAT}):

$$R(x_1,\ldots,x_n) \leftrightarrow \bigwedge_{1\leq i\leq j\leq n} \operatorname{pr}_{ij} R(x_i,x_j)$$

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \le p(n)$. Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions $\Rightarrow \langle \Gamma \rangle_n \in 2^{O(n^k)}$

- $\Gamma_{3\rm SAT}$ doesn't have short definitions, $\langle \Gamma_{3\rm SAT} \rangle_n$ contains all 2^{2^n} *n*-ary relations
- Similarly for $\Gamma_{\rm HornSAT}$, $|\langle \Gamma_{\rm HornSAT} \rangle|_n$ is double exponential

Boring example (2-SAT)

 Γ_{2SAT} has short definitions: each $R \in \langle \Gamma_{2SAT} \rangle_n$ satisfies the 2-Helly property (and binary relations are pp-definable from Γ_{2SAT}):

$$R(x_1,\ldots,x_n) \leftrightarrow \bigwedge_{1\leq i\leq j\leq n} \operatorname{pr}_{ij} R(x_i,x_j)$$

 \Rightarrow pp-definitions of length $O(n^2)$

Interesting example (Linear systems over \mathbb{Z}_2)

Interesting example (Linear systems over \mathbb{Z}_2)

•
$$A = \{0,1\}$$
, $\Gamma_{\mathrm{Lin}} = \{R_{\mathrm{Lin}}, C_0, C_1\}$ where $C_a = \{a\}$ and

$$R_{\rm Lin} = \{(a, b, c) \in \{0, 1\}^3 \mid a + b = c\}$$

Interesting example (Linear systems over \mathbb{Z}_2)

•
$$A = \{0,1\}$$
, $\Gamma_{\text{Lin}} = \{R_{\text{Lin}}, C_0, C_1\}$ where $C_a = \{a\}$ and

$$R_{\rm Lin} = \{(a, b, c) \in \{0, 1\}^3 \mid a + b = c\}$$

• $\langle \Gamma_{\rm Lin} \rangle_n$ consists of all affine subspaces of \mathbb{Z}_2^n

Interesting example (Linear systems over \mathbb{Z}_2)

•
$$A = \{0,1\}$$
, $\Gamma_{\mathrm{Lin}} = \{R_{\mathrm{Lin}}, C_0, C_1\}$ where $C_a = \{a\}$ and

$$R_{\rm Lin} = \{(a, b, c) \in \{0, 1\}^3 \mid a + b = c\}$$

- $\langle \Gamma_{\rm Lin} \rangle_n$ consists of all affine subspaces of \mathbb{Z}_2^n
- Each subspace is a conjunction of at most *n* linear equations

Interesting example (Linear systems over \mathbb{Z}_2)

•
$$A = \{0,1\}$$
, $\Gamma_{\text{Lin}} = \{R_{\text{Lin}}, C_0, C_1\}$ where $C_a = \{a\}$ and

$$R_{\rm Lin} = \{(a, b, c) \in \{0, 1\}^3 \mid a + b = c\}$$

- $\langle \Gamma_{\rm Lin} \rangle_n$ consists of all affine subspaces of \mathbb{Z}_2^n
- Each subspace is a conjunction of at most *n* linear equations
- Each equation can be pp-defined in O(n):

Interesting example (Linear systems over \mathbb{Z}_2)

•
$$A = \{0,1\}$$
, $\Gamma_{\mathrm{Lin}} = \{R_{\mathrm{Lin}}, C_0, C_1\}$ where $C_a = \{a\}$ and

$$R_{\rm Lin} = \{(a, b, c) \in \{0, 1\}^3 \mid a + b = c\}$$

- $\langle \Gamma_{\rm Lin} \rangle_n$ consists of all affine subspaces of \mathbb{Z}_2^n
- Each subspace is a conjunction of at most *n* linear equations
- Each equation can be pp-defined in O(n):
 - for example, $x_1 + x_2 + x_3 = 1$ is defined by

 $(\exists u_1)(\exists u_2)(x_1 + x_2 = u_1 \land u_1 + x_3 = u_2 \land u_2 = 1)$

Interesting example (Linear systems over \mathbb{Z}_2)

•
$$A = \{0,1\}$$
, $\Gamma_{\text{Lin}} = \{R_{\text{Lin}}, C_0, C_1\}$ where $C_a = \{a\}$ and

$$R_{\rm Lin} = \{(a, b, c) \in \{0, 1\}^3 \mid a + b = c\}$$

- $\langle \Gamma_{\rm Lin} \rangle_n$ consists of all affine subspaces of \mathbb{Z}_2^n
- Each subspace is a conjunction of at most *n* linear equations
- Each equation can be pp-defined in O(n):
 - for example, $x_1 + x_2 + x_3 = 1$ is defined by

 $(\exists u_1)(\exists u_2)(x_1 + x_2 = u_1 \land u_1 + x_3 = u_2 \land u_2 = 1)$

• in general, $x_{i_1} + x_{i_2} + \cdots + x_{i_k} = a$ is defined by

$$(\exists u_1)\ldots(\exists u_{k-1})(\bigwedge_{1\leq j\leq k-1}R_{\mathrm{Lin}}(x_{i_j},x_{i_{j+1}},u_j)\wedge C_a(u_k))$$

Interesting example (Linear systems over \mathbb{Z}_2)

•
$$A = \{0,1\}$$
, $\Gamma_{\text{Lin}} = \{R_{\text{Lin}}, C_0, C_1\}$ where $C_a = \{a\}$ and

$$R_{\rm Lin} = \{(a, b, c) \in \{0, 1\}^3 \mid a + b = c\}$$

- $\langle \Gamma_{\rm Lin} \rangle_n$ consists of all affine subspaces of \mathbb{Z}_2^n
- Each subspace is a conjunction of at most *n* linear equations
- Each equation can be pp-defined in O(n):
 - for example, $x_1 + x_2 + x_3 = 1$ is defined by

 $(\exists u_1)(\exists u_2)(x_1 + x_2 = u_1 \land u_1 + x_3 = u_2 \land u_2 = 1)$

• in general, $x_{i_1} + x_{i_2} + \cdots + x_{i_k} = a$ is defined by

$$(\exists u_1)\ldots(\exists u_{k-1})(\bigwedge_{1\leq j\leq k-1}R_{\mathrm{Lin}}(x_{i_j},x_{i_{j+1}},u_j)\wedge C_a(u_k))$$

 \Rightarrow pp-definitions of length $O(n^2)$

The conjecture and the result

Few subpowers

Γ has few subpowers if $|\langle \Gamma \rangle_n| \le 2^{p(n)}$ for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has $2^{O(n^k)}$ subpowers iff it is invariant under a k-edge function.

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has $2^{O(n^k)}$ subpowers iff it is invariant under a k-edge function. In that case, $CSP(\Gamma)$ can be solved by a Gaussian-elimination-like algorithm.

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has $2^{O(n^k)}$ subpowers iff it is invariant under a k-edge function. In that case, $CSP(\Gamma)$ can be solved by a Gaussian-elimination-like algorithm. Otherwise, it has $\Omega(2^{c^n})$ subpowers for some c > 1. Γ has few subpowers if $|\langle \Gamma \rangle_n| \le 2^{p(n)}$ for some polynomial p(n)Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has $2^{O(n^k)}$ subpowers iff it is invariant under a k-edge function. In that case, $CSP(\Gamma)$ can be solved by a Gaussian-elimination-like algorithm. Otherwise, it has $\Omega(2^{c^n})$ subpowers for some c > 1.

• Γ_{2SAT} is invariant under the 2-edge function called majority:

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has $2^{O(n^k)}$ subpowers iff it is invariant under a k-edge function. In that case, $CSP(\Gamma)$ can be solved by a Gaussian-elimination-like algorithm. Otherwise, it has $\Omega(2^{c^n})$ subpowers for some c > 1.

• $\Gamma_{2\text{SAT}}$ is invariant under the 2-edge function called majority: ² maj(x, x, y) = maj(x, y, x) = maj(y, x, x) = x

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has $2^{O(n^k)}$ subpowers iff it is invariant under a k-edge function. In that case, $CSP(\Gamma)$ can be solved by a Gaussian-elimination-like algorithm. Otherwise, it has $\Omega(2^{c^n})$ subpowers for some c > 1.

• Γ_{2SAT} is invariant under the 2-edge function called majority: ² maj(x, x, y) = maj(x, y, x) = maj(y, x, x) = x

²In general, a *k*-ary function $f(x, x, ..., x, y) = \cdots = f(y, x, ..., x) = x$, called near-unanimity is equivalent to the *k*-Helly property (boring!)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has $2^{O(n^k)}$ subpowers iff it is invariant under a k-edge function. In that case, $CSP(\Gamma)$ can be solved by a Gaussian-elimination-like algorithm. Otherwise, it has $\Omega(2^{c^n})$ subpowers for some c > 1.

- Γ_{2SAT} is invariant under the 2-edge function called majority: ² maj(x, x, y) = maj(x, y, x) = maj(y, x, x) = x
- Γ_{Lin} is invariant under the 2-edge Mal'tsev function x y + z

²In general, a *k*-ary function $f(x, x, ..., x, y) = \cdots = f(y, x, ..., x) = x$, called near-unanimity is equivalent to the *k*-Helly property (boring!)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has $2^{O(n^k)}$ subpowers iff it is invariant under a k-edge function. In that case, $CSP(\Gamma)$ can be solved by a Gaussian-elimination-like algorithm. Otherwise, it has $\Omega(2^{c^n})$ subpowers for some c > 1.

- Γ_{2SAT} is invariant under the 2-edge function called majority: ² maj(x, x, y) = maj(x, y, x) = maj(y, x, x) = x
- Γ_{Lin} is invariant under the 2-edge Mal'tsev function x y + z

(general *k*-edge is a "combination" of those two types of behavior)

²In general, a *k*-ary function $f(x, x, ..., x, y) = \cdots = f(y, x, ..., x) = x$, called near-unanimity is equivalent to the *k*-Helly property (boring!)

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers.

(weak) Γ has short definitions iff it has few subpowers. (strong) Γ has $O(n^k)$ definitions iff it has a k-edge function.

• Short definitions imply few subpowers (cardinality argument)

- Short definitions imply few subpowers (cardinality argument)
- True for $|A| = \{0, 1\}$:

- Short definitions imply few subpowers (cardinality argument)
- True for $|A| = \{0, 1\}$: essentially only Γ_{2SAT} and Γ_{Lin} (Post's lattice 1941, first noted by Lagerkvist, Wahlström 2014)

- Short definitions imply few subpowers (cardinality argument)
- True for $|A| = \{0, 1\}$: essentially only Γ_{2SAT} and Γ_{Lin} (Post's lattice 1941, first noted by Lagerkvist, Wahlström 2014)
- True if invariant under a near-unanimity (Helly property)

(weak) Γ has short definitions iff it has few subpowers. (strong) Γ has $O(n^k)$ definitions iff it has a k-edge function.

- Short definitions imply few subpowers (cardinality argument)
- True for $|A| = \{0, 1\}$: essentially only Γ_{2SAT} and Γ_{Lin} (Post's lattice 1941, first noted by Lagerkvist, Wahlström 2014)
- True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually finite variety.

(weak) Γ has short definitions iff it has few subpowers. (strong) Γ has $O(n^k)$ definitions iff it has a k-edge function.

- Short definitions imply few subpowers (cardinality argument)
- True for $|A| = \{0, 1\}$: essentially only Γ_{2SAT} and Γ_{Lin} (Post's lattice 1941, first noted by Lagerkvist, Wahlström 2014)
- True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually finite variety.³

³For groups, this means being an *A*-group (Sylow subgroups are abelian)

(weak) Γ has short definitions iff it has few subpowers. (strong) Γ has $O(n^k)$ definitions iff it has a k-edge function.

- Short definitions imply few subpowers (cardinality argument)
- True for $|A| = \{0, 1\}$: essentially only Γ_{2SAT} and Γ_{Lin} (Post's lattice 1941, first noted by Lagerkvist, Wahlström 2014)
- True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually finite variety.³ **Corollary** True if |A| = 3.

³For groups, this means being an *A*-group (Sylow subgroups are abelian)

(I don't have time for) the proof

Proof overview

I. Switch to the right formalism (algebras, multisorted)

- I. Switch to the right formalism (algebras, multisorted)
- II. Get rid of the boring case (reduce to parallelogram relations)

- I. Switch to the right formalism (algebras, multisorted)
- II. Get rid of the boring case (reduce to parallelogram relations)
- III. Reduce to "equation-like" relations (critical, reduced)

- I. Switch to the right formalism (algebras, multisorted)
- II. Get rid of the boring case (reduce to parallelogram relations)
- III. Reduce to "equation-like" relations (critical, reduced)
- IV. Simlulate the "shortening" construction for linear equations

- I. Switch to the right formalism (algebras, multisorted)
- II. Get rid of the boring case (reduce to parallelogram relations)
- III. Reduce to "equation-like" relations (critical, reduced)
- IV. Simlulate the "shortening" construction for linear equations⁴

⁴Step IV. is the only place where we need residual finiteness. Otherwise, in "x + y = u" the domain for *u* may grow too fast (in general, " $x + y \neq y + x$ ").

 $R \subseteq A^n$ is invariant under $f : A^k \to A$, write $R \perp f$: $\mathbf{a}^i \in R$ for $1 \le i \le k \implies f(\mathbf{a}^1, \dots, \mathbf{a}^k) \in R$

 $R \subseteq A^{n} \text{ is invariant under } f : A^{k} \to A, \text{ write } R \perp f:$ $\mathbf{a}^{\mathbf{i}} \in R \text{ for } 1 \leq i \leq k \implies f(\mathbf{a}^{1}, \dots, \mathbf{a}^{k}) \in R$ $\mathbf{Fact:} \langle \Gamma \rangle = (\Gamma^{\perp})^{\perp},$

 $R \subseteq A^n$ is invariant under $f : A^k \to A$, write $R \perp f$: $\mathbf{a}^i \in R$ for $1 \le i \le k \Rightarrow f(\mathbf{a}^1, \dots, \mathbf{a}^k) \in R$ Fact: $\langle \Gamma \rangle = (\Gamma^{\perp})^{\perp}$, and also $\langle \mathcal{F} \rangle = (\mathcal{F}^{\perp})^{\perp}$ (the function clone, i.e. all term functions built from \mathcal{F})

 $R \subseteq A^n$ is invariant under $f : A^k \to A$, write $R \perp f$: $\mathbf{a}^i \in R$ for $1 \leq i \leq k \Rightarrow f(\mathbf{a}^1, \dots, \mathbf{a}^k) \in R$ Fact: $\langle \Gamma \rangle = (\Gamma^{\perp})^{\perp}$, and also $\langle \mathcal{F} \rangle = (\mathcal{F}^{\perp})^{\perp}$ (the function clone, i.e. all term functions built from \mathcal{F})

$$R \subseteq A^n$$
 is invariant under $f : A^k \to A$, write $R \perp f$:

$$\mathbf{a^i} \in R$$
 for $1 \le i \le k \ \Rightarrow \ f(\mathbf{a^1}, \dots, \mathbf{a^k}) \in R$

Fact: $\langle \Gamma \rangle = (\Gamma^{\perp})^{\perp}$, and also $\langle \mathcal{F} \rangle = (\mathcal{F}^{\perp})^{\perp}$ (the function clone, i.e. all term functions built from \mathcal{F})

•
$$\langle \Gamma_{2SAT} \rangle = \{ maj \}^{\perp}$$

$$R \subseteq A^n$$
 is invariant under $f : A^k \to A$, write $R \perp f$:

$$\mathbf{a^i} \in R$$
 for $1 \le i \le k \ \Rightarrow \ f(\mathbf{a^1}, \dots, \mathbf{a^k}) \in R$

Fact: $\langle \Gamma \rangle = (\Gamma^{\perp})^{\perp}$, and also $\langle \mathcal{F} \rangle = (\mathcal{F}^{\perp})^{\perp}$ (the function clone, i.e. all term functions built from \mathcal{F})

- $\langle \Gamma_{2SAT} \rangle = \{ maj \}^{\perp}$
- $\langle \Gamma_{\rm Lin} \rangle = \{x y + z\}^{\perp}$

$$R \subseteq A^n$$
 is invariant under $f : A^k \to A$, write $R \perp f$:

$$\mathbf{a^i} \in R$$
 for $1 \le i \le k \ \Rightarrow \ f(\mathbf{a^1}, \dots, \mathbf{a^k}) \in R$

Fact: $\langle \Gamma \rangle = (\Gamma^{\perp})^{\perp}$, and also $\langle \mathcal{F} \rangle = (\mathcal{F}^{\perp})^{\perp}$ (the function clone, i.e. all term functions built from \mathcal{F})

- $\langle \Gamma_{2SAT} \rangle = \{ maj \}^{\perp}$
- $\langle \Gamma_{\text{Lin}} \rangle = \{x y + z\}^{\perp}$
- $\{\leq\}^{\perp} =$ all monotone Boolean functions

$$R \subseteq A^n$$
 is invariant under $f : A^k \to A$, write $R \perp f$:

$$\mathbf{a^i} \in R$$
 for $1 \le i \le k \ \Rightarrow \ f(\mathbf{a^1}, \dots, \mathbf{a^k}) \in R$

Fact: $\langle \Gamma \rangle = (\Gamma^{\perp})^{\perp}$, and also $\langle \mathcal{F} \rangle = (\mathcal{F}^{\perp})^{\perp}$ (the function clone, i.e. all term functions built from \mathcal{F})

Examples

- $\langle \Gamma_{2SAT} \rangle = \{ maj \}^{\perp}$
- $\langle \Gamma_{\text{Lin}} \rangle = \{x y + z\}^{\perp}$
- $\{\leq\}^{\perp} =$ all monotone Boolean functions

Observe: If $\langle \Gamma \rangle = \langle \Gamma' \rangle$, then Γ has short definitions iff Γ' does.

Step I – Switch to the right formalism: algebras

$$R \subseteq A^n$$
 is invariant under $f : A^k \to A$, write $R \perp f$:

$$\mathbf{a^i} \in R$$
 for $1 \le i \le k \ \Rightarrow \ f(\mathbf{a^1}, \dots, \mathbf{a^k}) \in R$

Fact: $\langle \Gamma \rangle = (\Gamma^{\perp})^{\perp}$, and also $\langle \mathcal{F} \rangle = (\mathcal{F}^{\perp})^{\perp}$ (the function clone, i.e. all term functions built from \mathcal{F})

Examples

- $\langle \Gamma_{2SAT} \rangle = \{ maj \}^{\perp}$
- $\langle \Gamma_{\text{Lin}} \rangle = \{x y + z\}^{\perp}$
- $\{\leq\}^{\perp} =$ all monotone Boolean functions

Observe: If $\langle \Gamma \rangle = \langle \Gamma' \rangle$, then Γ has short definitions iff Γ' does.

Thus natural to consider the polymorphism algebra $\mathbf{A} = (A; \Gamma^{\perp})$.

Step I – Switch to the right formalism: algebras

$$R \subseteq A^n$$
 is invariant under $f : A^k \to A$, write $R \perp f$:

$$\mathbf{a^i} \in R$$
 for $1 \le i \le k \ \Rightarrow \ f(\mathbf{a^1}, \dots, \mathbf{a^k}) \in R$

Fact: $\langle \Gamma \rangle = (\Gamma^{\perp})^{\perp}$, and also $\langle \mathcal{F} \rangle = (\mathcal{F}^{\perp})^{\perp}$ (the function clone, i.e. all term functions built from \mathcal{F})

Examples

- $\langle \Gamma_{2SAT} \rangle = \{ maj \}^{\perp}$
- $\langle \Gamma_{\text{Lin}} \rangle = \{x y + z\}^{\perp}$
- $\{\leq\}^{\perp} =$ all monotone Boolean functions

Observe: If $\langle \Gamma \rangle = \langle \Gamma' \rangle$, then Γ has short definitions iff Γ' does.

Thus natural to consider the polymorphism algebra $\mathbf{A} = (A; \Gamma^{\perp})$. Invariant relations are sub-[universes of]powers of \mathbf{A} , $R \leq \mathbf{A}^n$.

Fundamental theorem of...

Fundamental theorem of...

• arithmetic: $n = p_1^{e_1} \cdots p_k^{e_k}$

e.g. $6 = 2 \cdot 3$

Fundamental theorem of...

- arithmetic: $n = p_1^{e_1} \cdots p_k^{e_k}$ e.g. $6 = 2 \cdot 3$
- abelian groups: $G = \mathbb{Z}_{p_1}^{e_1} \times \cdots \times \mathbb{Z}_{p_k}^{e_k}$ e.g. $\mathbb{Z}_6 = \mathbb{Z}_2 \times \mathbb{Z}_3$

Fundamental theorem of...

- arithmetic: $n = p_1^{e_1} \cdots p_k^{e_k}$ e.g. $6 = 2 \cdot 3$
- abelian groups: $G = \mathbb{Z}_{p_1}^{e_1} \times \cdots \times \mathbb{Z}_{p_k}^{e_k}$ e.g. $\mathbb{Z}_6 = \mathbb{Z}_2 \times \mathbb{Z}_3$
- general algebras: $A \le A_1 \times \cdots \times A_k$ where $A_i \in \mathrm{HSP}(A)$ are subdirectly irreducible (SI)

Fundamental theorem of...

- arithmetic: $n = p_1^{e_1} \cdots p_k^{e_k}$ e.g. $6 = 2 \cdot 3$
- abelian groups: $G = \mathbb{Z}_{p_1}^{e_1} \times \cdots \times \mathbb{Z}_{p_k}^{e_k}$ e.g. $\mathbb{Z}_6 = \mathbb{Z}_2 \times \mathbb{Z}_3$
- general algebras: $A \le A_1 \times \cdots \times A_k$ where $A_i \in \mathrm{HSP}(A)$ are subdirectly irreducible (SI)

Fundamental theorem of...

- arithmetic: $n = p_1^{e_1} \cdots p_k^{e_k}$ e.g. $6 = 2 \cdot 3$
- abelian groups: $G = \mathbb{Z}_{p_1}^{e_1} \times \cdots \times \mathbb{Z}_{p_k}^{e_k}$ e.g. $\mathbb{Z}_6 = \mathbb{Z}_2 \times \mathbb{Z}_3$
- general algebras: $A \le A_1 \times \cdots \times A_k$ where $A_i \in \mathrm{HSP}(A)$ are subdirectly irreducible (SI)

Working with subdirect decompositions...

• Residually finite = finite bound on SIs = $\exists N \text{ all } \mathbf{A}_i \in \mathrm{HS}(\mathbf{A}^N)$

Fundamental theorem of...

- arithmetic: $n = p_1^{e_1} \cdots p_k^{e_k}$ e.g. $6 = 2 \cdot 3$
- abelian groups: $G = \mathbb{Z}_{p_1}^{e_1} \times \cdots \times \mathbb{Z}_{p_k}^{e_k}$ e.g. $\mathbb{Z}_6 = \mathbb{Z}_2 \times \mathbb{Z}_3$
- general algebras: $A \le A_1 \times \cdots \times A_k$ where $A_i \in \mathrm{HSP}(A)$ are subdirectly irreducible (SI)

- Residually finite = finite bound on SIs = $\exists N$ all $A_i \in HS(A^N)$
- Multisorted relations: $R \leq A^n \iff R' \leq \prod_{j=1}^m \mathbf{A}_{\mathbf{i}_j}$

Fundamental theorem of...

- arithmetic: $n = p_1^{e_1} \cdots p_k^{e_k}$ e.g. $6 = 2 \cdot 3$
- abelian groups: $G = \mathbb{Z}_{p_1}^{e_1} \times \cdots \times \mathbb{Z}_{p_k}^{e_k}$ e.g. $\mathbb{Z}_6 = \mathbb{Z}_2 \times \mathbb{Z}_3$
- general algebras: $A \le A_1 \times \cdots \times A_k$ where $A_i \in \mathrm{HSP}(A)$ are subdirectly irreducible (SI)

- Residually finite = finite bound on SIs = $\exists N$ all $A_i \in HS(A^N)$
- Multisorted relations: $R \leq A^n \iff R' \leq \prod_{j=1}^m \mathbf{A}_{\mathbf{i}_j}$
- Multisorted definitions over a family of algebras $\{\textbf{A}_1,\ldots,\textbf{A}_k\}$

Fundamental theorem of...

- arithmetic: $n = p_1^{e_1} \cdots p_k^{e_k}$ e.g. $6 = 2 \cdot 3$
- abelian groups: $G = \mathbb{Z}_{p_1}^{e_1} \times \cdots \times \mathbb{Z}_{p_k}^{e_k}$ e.g. $\mathbb{Z}_6 = \mathbb{Z}_2 \times \mathbb{Z}_3$
- general algebras: $A \le A_1 \times \cdots \times A_k$ where $A_i \in \mathrm{HSP}(A)$ are subdirectly irreducible (SI)

- Residually finite = finite bound on SIs = $\exists N \text{ all } A_i \in HS(A^N)$
- Multisorted relations: $R \leq A^n \iff R' \leq \prod_{j=1}^m \mathbf{A}_{\mathbf{i}_j}$
- Multisorted definitions over a family of algebras $\{\textbf{A}_1,\ldots,\textbf{A}_k\}$
- A has pp-definitions of length O(n^k) iff {A₁,... A_k} does, etc. (some technical work needed here)

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every $R \in \langle \Gamma \rangle$ can be written as $R = R' \wedge \Lambda$ proj (R)

$$R = R' \wedge \bigwedge_{|I| \le k} \operatorname{proj}_{I}(R)$$

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every $R \in \langle \Gamma \rangle$ can be written as $R = R' \land \Lambda$ proj (R)

$$R = R' \wedge \bigwedge_{|I| \leq k} \operatorname{proj}_{I}(R)$$

for some $R' \in \langle \Gamma \rangle$ with the parallelogram property:

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every $R \in \langle \Gamma \rangle$ can be written as $R = R' \wedge \Lambda$ proj (R)

$$R = R' \wedge \bigwedge_{|I| \leq k} \operatorname{proj}_{I}(R)$$

for some $R' \in \langle \Gamma \rangle$ with the parallelogram property:

For every $l \subset [n]$: $(\bar{x}, \bar{y}), (\bar{x}, \bar{v}), (\bar{u}, \bar{y}) \in R'$ $\Rightarrow (\bar{u}, \bar{v}) \in R'$

[Picture by Michael]

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every $R \in \langle \Gamma \rangle$ can be written as $R = R' \wedge \Lambda$ proj (R)

$$R = R' \wedge \bigwedge_{|I| \leq k} \operatorname{proj}_{I}(R)$$

for some $R' \in \langle \Gamma \rangle$ with the parallelogram property:

For every $I \subset [n]$: $(\bar{x}, \bar{y}), (\bar{x}, \bar{v}), (\bar{u}, \bar{y}) \in R'$ $\Rightarrow (\bar{u}, \bar{v}) \in R'$

[Picture by Michael]

Examples

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every $R \in \langle \Gamma \rangle$ can be written as $R = R' \wedge \Lambda$ proj (R)

$$R = R' \wedge \bigwedge_{|I| \leq k} \operatorname{proj}_{I}(R)$$

for some $R' \in \langle \Gamma \rangle$ with the parallelogram property:

For every $l \subset [n]$: $(\bar{x}, \bar{y}), (\bar{x}, \bar{v}), (\bar{u}, \bar{y}) \in R'$ $\Rightarrow (\bar{u}, \bar{v}) \in R'$

[Picture by Michael]

Examples

• Γ_{Lin} : R' = R (affine subspaces have the parallelogram property)

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every $R \in \langle \Gamma \rangle$ can be written as $R = R' \wedge \Lambda$ proj (R)

$$R = R' \wedge \bigwedge_{|I| \leq k} \operatorname{proj}_{I}(R)$$

for some $R' \in \langle \Gamma \rangle$ with the parallelogram property:

For every $l \subset [n]$: $(\bar{x}, \bar{y}), (\bar{x}, \bar{v}), (\bar{u}, \bar{y}) \in R'$ $\Rightarrow (\bar{u}, \bar{v}) \in R'$

[Picture by Michael]

Examples

- Γ_{Lin} : R' = R (affine subspaces have the parallelogram property)
- Γ_{2SAT} : $R' = A^n$, already $R = \bigwedge_{|I| \le 2} \operatorname{proj}_I(R)$ (boring!) 15

Step III - Reduce to "equation-like" relations

 $R \in \langle \Gamma \rangle$ is critical if it is \wedge -irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most $n \cdot |A|^2$ critical parallelogram relations (c.p.r.'s).

Lemma: Every parallelogram relation is an intersection of at most $n \cdot |A|^2$ critical parallelogram relations (c.p.r.'s).

Proof: somewhat like choosing codimension-many linear equations to define a subspace

Lemma: Every parallelogram relation is an intersection of at most $n \cdot |A|^2$ critical parallelogram relations (c.p.r.'s).

Proof: somewhat like choosing codimension-many linear equations to define a subspace

Similarity " $x_1 + x_2 = x'_1 + x'_2$ iff for some u, $x_1 + x_2 = u$ and $x'_1 + x'_2 = u$ "

Lemma: Every parallelogram relation is an intersection of at most $n \cdot |A|^2$ critical parallelogram relations (c.p.r.'s).

Proof: somewhat like choosing codimension-many linear equations to define a subspace

Similarity " $x_1 + x_2 = x'_1 + x'_2$ iff for some u, $x_1 + x_2 = u$ and $x'_1 + x'_2 = u$ "

The linkedness congruence \sim_I on $\operatorname{proj}_I R$:

$$\mathbf{x} \sim_I \mathbf{x}'$$
 iff $(\exists \mathbf{z})(R(\mathbf{x}, \mathbf{z}) \land R(\mathbf{x}', \mathbf{z}))$

Lemma: Every parallelogram relation is an intersection of at most $n \cdot |A|^2$ critical parallelogram relations (c.p.r.'s).

Proof: somewhat like choosing codimension-many linear equations to define a subspace

Similarity " $x_1 + x_2 = x'_1 + x'_2$ iff for some u, $x_1 + x_2 = u$ and $x'_1 + x'_2 = u$ "

The linkedness congruence \sim_I on $\operatorname{proj}_I R$:

$$\mathbf{x} \sim_I \mathbf{x}'$$
 iff $(\exists \mathbf{z})(R(\mathbf{x}, \mathbf{z}) \land R(\mathbf{x}', \mathbf{z}))$

R is reduced if $\sim_{\{i\}}$ is trivial for any $i \in [n]$.

Lemma: Every parallelogram relation is an intersection of at most $n \cdot |A|^2$ critical parallelogram relations (c.p.r.'s).

Proof: somewhat like choosing codimension-many linear equations to define a subspace

Similarity " $x_1 + x_2 = x'_1 + x'_2$ iff for some u, $x_1 + x_2 = u$ and $x'_1 + x'_2 = u$ "

The linkedness congruence \sim_I on $\operatorname{proj}_I R$:

$$\mathbf{x} \sim_I \mathbf{x}'$$
 iff $(\exists \mathbf{z})(R(\mathbf{x}, \mathbf{z}) \land R(\mathbf{x}', \mathbf{z}))$

R is reduced if $\sim_{\{i\}}$ is trivial for any $i \in [n]$.

Easy: C.p.r.'s can be defined from reduced c.p.r.'s in O(n)

Lemma: Every parallelogram relation is an intersection of at most $n \cdot |A|^2$ critical parallelogram relations (c.p.r.'s).

Proof: somewhat like choosing codimension-many linear equations to define a subspace

Similarity " $x_1 + x_2 = x'_1 + x'_2$ iff for some u, $x_1 + x_2 = u$ and $x'_1 + x'_2 = u$ "

The linkedness congruence \sim_I on $\operatorname{proj}_I R$:

$$\mathbf{x} \sim_I \mathbf{x}'$$
 iff $(\exists \mathbf{z})(R(\mathbf{x}, \mathbf{z}) \land R(\mathbf{x}', \mathbf{z}))$

R is reduced if $\sim_{\{i\}}$ is trivial for any $i \in [n]$.

Easy: C.p.r.'s can be defined from reduced c.p.r.'s in O(n)

Key Lemma: If *R* is a reduced c.p.r., then for any $I \subset [n]$ the algebra $\mathbf{A}_{\mathbf{I}} = \operatorname{proj}_{l} R/_{\sim l}$ is SI. (multisorted Kearnes, Szendrei) 16

 $\Gamma' =$ all multisorted 3-ary relations over $HS(\mathbf{A}^N)$.

 $\Gamma' =$ all multisorted 3-ary relations over $HS(\mathbf{A}^N)$. By induction on *n*: a reduced c.p.r. $R \in \langle \Gamma' \rangle$ has a O(n)-long pp-definition.

 $\Gamma' =$ all multisorted 3-ary relations over $HS(\mathbf{A}^N)$. By induction on *n*: a reduced c.p.r. $R \in \langle \Gamma' \rangle$ has a O(n)-long pp-definition. Define:

 $R(x_1,\ldots,x_n) \leftrightarrow (\exists u \in \mathbf{A_{12}})(Q(x_1,x_2,u) \land R'(u,x_3,\ldots,x_n))$

 $\Gamma' =$ all multisorted 3-ary relations over $HS(\mathbf{A}^N)$. By induction on *n*: a reduced c.p.r. $R \in \langle \Gamma' \rangle$ has a O(n)-long pp-definition. Define:

$$R(x_1,\ldots,x_n) \leftrightarrow (\exists u \in \mathbf{A_{12}})(Q(x_1,x_2,u) \land R'(u,x_3,\ldots,x_n))$$

[Picture by Michael]

 $\Gamma' =$ all multisorted 3-ary relations over $HS(\mathbf{A}^N)$. By induction on *n*: a reduced c.p.r. $R \in \langle \Gamma' \rangle$ has a O(n)-long pp-definition. Define:

 $\Gamma' =$ all multisorted 3-ary relations over $HS(\mathbf{A}^N)$. By induction on *n*: a reduced c.p.r. $R \in \langle \Gamma' \rangle$ has a O(n)-long pp-definition. Define:

 $R(x_1,\ldots,x_n) \leftrightarrow (\exists u \in \mathbf{A_{12}})(Q(x_1,x_2,u) \land R'(u,x_3,\ldots,x_n))$

 $\Gamma' =$ all multisorted 3-ary relations over $HS(\mathbf{A}^N)$. By induction on *n*: a reduced c.p.r. $R \in \langle \Gamma' \rangle$ has a O(n)-long pp-definition. Define:

 $R(x_1,\ldots,x_n) \leftrightarrow (\exists u \in \mathbf{A_{12}})(Q(x_1,x_2,u) \land R'(u,x_3,\ldots,x_n))$

Step IV – Simlulate "shortening" linear equations

 $\Gamma' =$ all multisorted 3-ary relations over $HS(\mathbf{A}^N)$. By induction on *n*: a reduced c.p.r. $R \in \langle \Gamma' \rangle$ has a O(n)-long pp-definition. Define:

$$R(x_{1},...,x_{n}) \leftrightarrow (\exists u \in \mathbf{A}_{12})(Q(x_{1},x_{2},u) \land R'(u,x_{3},...,x_{n}))$$

$$A_{12}$$

$$(x_{1},x_{2},u) \in Q \Leftrightarrow$$

$$u = (x_{1},x_{2})/_{\sim}$$

$$(y,\bar{z}) \in R' :\Leftrightarrow$$

$$u = (x_{1},x_{2})/_{\sim}, (x_{1},x_{2},\bar{z}) \in R$$
[Picture by Michael]
[slightly ruined by B.]

By Key Lemma, $\mathbf{A_{12}} = \frac{\operatorname{proj}_{12} R}{\sim_{12}}$ is SI, so by residual finiteness it is in $\operatorname{HS}(\mathbf{A}^N)$. Thus $Q \in \Gamma'$; the arity of R' is n-1.

17

The application

A "representation" of $R \in \langle \Gamma \rangle$ must be both small and efficient

A "representation" of $R \in \langle \Gamma \rangle$ must be both small and efficient **Examples**

A "representation" of $R \in \langle \Gamma \rangle$ must be both small and efficient **Examples**

• basis of a vector subspace (+ row reduction)

A "representation" of $R \in \langle \Gamma \rangle$ must be both small and efficient **Examples**

- basis of a vector subspace (+ row reduction)
- SGS of a permutation group (+ sifting in Schreier-Sims algo)

A "representation" of $R \in \langle \Gamma \rangle$ must be both small and efficient **Examples**

- basis of a vector subspace (+ row reduction)
- SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers \Leftrightarrow small generating sets (BIMMVW 2010)

A "representation" of $R \in \langle \Gamma \rangle$ must be both small and efficient **Examples**

- basis of a vector subspace (+ row reduction)
- SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010) But are they efficient?

A "representation" of $R \in \langle \Gamma \rangle$ must be both small and efficient **Examples**

- basis of a vector subspace (+ row reduction)
- SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010) But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples $\mathbf{b}, \mathbf{a}^1, \dots, \mathbf{a}^k$ from A^n question is \mathbf{b} in the subpower generated by $\mathbf{a}^1, \dots, \mathbf{a}^k$? A "representation" of $R \in \langle \Gamma \rangle$ must be both small and efficient **Examples**

- basis of a vector subspace (+ row reduction)
- SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010) But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples $\mathbf{b}, \mathbf{a}^1, \dots, \mathbf{a}^k$ from A^n question is \mathbf{b} in the subpower generated by $\mathbf{a}^1, \dots, \mathbf{a}^k$?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers?

Let $\boldsymbol{\mathsf{A}}$ have few subpowers

Let $\boldsymbol{\mathsf{A}}$ have few subpowers

• Question: SMP(A) in P?

(BIMMVW 2010)

Let A have few subpowers

- Question: SMP(A) in P?
- **Theorem:** SMP(**A**) in NP.

(BIMMVW 2010) (Bulatov, Mayr, Szendrei 2019)

Let $\boldsymbol{\mathsf{A}}$ have few subpowers

- **Question:** SMP(**A**) in P?
- **Theorem:** SMP(**A**) in NP. (Bulatov, Mayr, Szendrei 2019) If **A** generates a residually small variety, then SMP(**A**) in P.

(BIMMVW 2010)

- Question: SMP(A) in P? (BIMMVW 2010)
- Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019)

If $\boldsymbol{\mathsf{A}}$ generates a residually small variety, then $\operatorname{SMP}(\boldsymbol{\mathsf{A}})$ in P.

Fact (B., Kompatscher)

Short definitions \Rightarrow SMP(**A**) in NP \cap co-NP

- Question: SMP(A) in P? (BIMMVW 2010)
- **Theorem:** SMP(**A**) in NP. (Bulatov, Mayr, Szendrei 2019) If **A** generates a residually small variety, then SMP(**A**) in P.

Fact (B., Kompatscher)

Short definitions \Rightarrow SMP(**A**) in NP \cap co-NP

Proof: Guess $\phi(x_1, ..., x_n)$, verify $\phi(\mathbf{a}^{\mathbf{i}})$ for $1 \leq i \leq k$ but $\neg \phi(\mathbf{b})$

- Question: SMP(A) in P? (BIMMVW 2010)
- **Theorem:** SMP(**A**) in NP. (Bulatov, Mayr, Szendrei 2019) If **A** generates a residually small variety, then SMP(**A**) in P.

Fact (B., Kompatscher)

Short definitions \Rightarrow SMP(**A**) in NP \cap co-NP

Proof: Guess $\phi(x_1, ..., x_n)$, verify $\phi(\mathbf{a}^{\mathbf{i}})$ for $1 \leq i \leq k$ but $\neg \phi(\mathbf{b})$

Question

Given generators for R, can we compute a short pp-definition in polynomial time?

- Question: SMP(A) in P? (BIMMVW 2010)
- **Theorem:** SMP(**A**) in NP. (Bulatov, Mayr, Szendrei 2019) If **A** generates a residually small variety, then SMP(**A**) in P.

Fact (B., Kompatscher)

Short definitions \Rightarrow SMP(**A**) in NP \cap co-NP

Proof: Guess $\phi(x_1, ..., x_n)$, verify $\phi(\mathbf{a}^{\mathbf{i}})$ for $1 \leq i \leq k$ but $\neg \phi(\mathbf{b})$

Question

Given generators for R, can we compute a short pp-definition in polynomial time?

• If true, then $\mathrm{SMP}(\boldsymbol{\mathsf{A}})$ in P

- Question: SMP(A) in P? (BIMMVW 2010)
- **Theorem:** SMP(**A**) in NP. (Bulatov, Mayr, Szendrei 2019) If **A** generates a residually small variety, then SMP(**A**) in P.

Fact (B., Kompatscher)

Short definitions \Rightarrow SMP(**A**) in NP \cap co-NP

Proof: Guess $\phi(x_1, ..., x_n)$, verify $\phi(\mathbf{a}^{\mathbf{i}})$ for $1 \leq i \leq k$ but $\neg \phi(\mathbf{b})$

Question

Given generators for R, can we compute a short pp-definition in polynomial time?

- If true, then $\mathrm{SMP}(\boldsymbol{\mathsf{A}})$ in P
- True for $A = \{0, 1\}$, otherwise open